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The aim of this paper is to introduce a field of study that has emerged over
the last decade, called Bayesian mechanics. Bayesian mechanics is a prob-
abilistic mechanics, comprising tools that enable us to model systems
endowed with a particular partition (i.e. into particles), where the internal
states (or the trajectories of internal states) of a particular system encode
the parameters of beliefs about external states (or their trajectories). These
tools allow us to write down mechanical theories for systems that look as
if they are estimating posterior probability distributions over the causes of
their sensory states. This provides a formal language for modelling the con-
straints, forces, potentials and other quantities determining the dynamics of
such systems, especially as they entail dynamics on a space of beliefs (i.e. on
a statistical manifold). Here, we will review the state of the art in the litera-
ture on the free energy principle, distinguishing between three ways in
which Bayesian mechanics has been applied to particular systems (i.e.
path-tracking, mode-tracking and mode-matching). We go on to examine a
duality between the free energy principle and the constrained maximum
entropy principle, both of which lie at the heart of Bayesian mechanics,
and discuss its implications.
1. Introduction
In this paper, we aim to introduce a field of study that has begun to emerge and
consolidate over the last decade—called Bayesian mechanics—which might
provide the first steps towards a general mechanics of self-organizing and com-
plex adaptive systems [1–6]. Bayesian mechanics involves modelling physical
systems that look as if they encode probabilistic beliefs about the environment
in which they are embedded, and in particular, about the ways in which they
are coupled to that environment. Bayesian mechanics thereby purports to pro-
vide a mathematically principled explanation of the striking property of all
things that exist over some time period, namely: that they come to acquire
the statistics of their embedding environment, and seem thereby to encode a
probabilistic representation of that environment [7,8]. Bayesian mechanics is
premised on the idea that the physical mechanics of particular kinds of systems
are systematically related to a mechanics of information, or the mechanics of the
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probabilistic beliefs that such systems encode. Bayesian
mechanics describes physical systems in terms of a pair of
complementary spaces linked by certain laws of motion: the
space of probability distributions over the physical states of
a system (the beliefs of an observer about its environment,
say), and a simultaneous space of probability distributions
encoded or entailed by the system, which are linked by
approximate Bayesian inference. Bayesian mechanics is pre-
mised on the conjugation of the dynamics of the beliefs of a
system (i.e. their time evolution in a space of beliefs) and
the physical dynamics of the system encoding those beliefs
(i.e. their time evolution in a space of possible states of
trajectories) [2,6]; the resulting mathematical structure is
known as a ‘conjugate information geometry’ in [1], where
one should note that ‘conjugate’ is a synonym for ‘adjoint’
or ‘dual’. Using the tools of Bayesian mechanics, we can
form mechanical theories for a self-organizing system that
looks as if it is modelling its embedding environment.
Thus, Bayesian mechanics describes the image of a physical
system as a flow in a conjugate space of probabilistic beliefs
held by the system, and describes the systematic relationships
between both perspectives.

It is often said that systems that are able to preserve their
organization over time, such as living systems, appear to
resist the entropic decay and dissipation that are dictated
by the second law of thermodynamics (this view is often
attributed to Schrödinger [9]). This is, in fact, untrue, and
something of a sleight of hand, as Schrödinger himself
knew well: self-organizing systems, and living systems in
particular, not only conform to the second law of thermodyn-
amics, which states that the internal entropy of an isolated
system always increases, but conform to it exceptionally
well—and in doing so, they also maintain their structural
integrity [4,9–14]. The foundations of Bayesian mechanics
have been laid out by the pioneers of the physics of complex
adaptive systems and of the study of natural and artificial
intelligence. Bayesian mechanics builds on these foundational
methods and tools, which have been applied to develop
mathematical theories and computational models, allowing
us to study the seemingly paradoxical emergence of stable
structure as a special case of entropic dissipation [15–17].
Bayesian mechanics has origins in variational principles
from other fields of physics and statistics, such as Jaynes’
principle of maximum entropy [18] and the principle of
stationary action, and draws on a broad, multidisciplinary
array of results from information theory and geometry
[19–21], cybernetics and artificial intelligence [22,23], compu-
tational neuroscience [24,25], gauge theories for statistical
inference and statistical physics [6,26–29], as well as stochas-
tic thermodynamics and non-equilibrium physics [17,30,31].
Bayesian mechanics builds on these tools and technologies,
allowing us to write down mechanical theories for the
particular class of physical systems that look as if they are
estimating posterior probability densities over (i.e. estimating
and updating their beliefs about) the causes of their
observations.

In this paper, we discuss the relationship between
dynamics, mechanics and principles. In physics, the ‘dynamics’
of a system usually refers to descriptions (i.e. phenomenolo-
gical accounts) of how something behaves: dynamics tell us
about changes in position and the forces that cause such
changes. Dynamics are descriptive, but are not necessarily
explanatory: they are not always directly premised on
things like laws of motions. We move from description to
explanation via mechanics, or mechanical theories: specific
mathematical theories formulated to explain where dynamics
come from, by providing a formulation of the relationships
between change, movement, energy (or force) and position.
Finally, principles are prescriptive: they are compact math-
ematical statements in light of which mechanical theories
can be interpreted. That is, if a mechanical theory explains
how a system behaves the way that it does, a principle
explains why. For instance, classical mechanics provides us
with equations of motion to explain how the dynamics of
non-relativistic bodies are generated, relating the changes in
position of the system to its potential and kinetic energies;
while the principle of stationary action tells us why such
relations obtain, i.e. the real path of the system is the one
where the accumulated difference between these two ener-
gies is at a minimum. Likewise, Bayesian mechanics is a set
of mechanical theories designed to explain the dynamics of
systems that look as if they are driven by probabilistic beliefs
about an embedding environment.

We have said that mechanics rest on prescriptive prin-
ciples. At the core of Bayesian mechanics is the variational
free energy principle (FEP). The FEP is a mathematical state-
ment that says something fundamental (i.e. from first
principles) about what it means for a system to exist, and to
be ‘the kind of thing that it is’. The FEP provides an interpret-
ation of mechanical theories for systems that look as if they
have beliefs. The FEP is thereby purported to explain why
self-organizing systems seem to resist the local tendency to
entropic decay, by acting to preserve their structure. The
FEP builds on decades of previous work redefining classical
and statistical mechanics in terms of surprisal and entropy
(e.g. the pioneering work of [15–17]). Surprisal is defined as
the log-probability of an event: heuristically, it quantifies
how implausible a given state of a process or outcome of a
measurement is, where high surprisal is associated with
states or outcomes with a low probability of being observed
(in other words, those states something would not, typically,
be found in).1 Entropy is the expected or average surprisal of
states or outcomes. It is also a measure of the spread of some
probability distribution or density, and quantifies the average
information content of that distribution [34]. Variational free
energy is a tractable (i.e. computable) upper bound on surpri-
sal; negative free energy is known as the evidence lower
bound or ELBO in machine learning [35]. The FEP describes
self-organization as a flow towards a free energy minimum. It
has been known that one can use the FEP to write down the
flow of dynamical systems as self-organizing by avoiding
surprising exchanges with the environment and thereby
minimizing entropic dissipation over time (e.g. [1,36]). The
FEP consolidates this into a modelling method, analogous
to the principles of maximum entropy or stationary action.
That is, the FEP is not a metaphysical statement about what
things ‘really are’. Rather, the FEP starts from a stipulative,
particular definition of what it means to be a thing, and
then can be used to write down mechanical theories for
systems that conform to this definition of thing-ness [1,3].

Before proceeding, we highlight the distinction between
two meanings of the word ‘belief’: a probabilistic one,
where the term ‘belief’ is used in the technical sense of Baye-
sian statistics, to denote a probability density over some
support, and thereby formalizes a belief of sorts about that
support; and a propositional or folk understanding of the
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term, common in philosophy and cognitive science, which
entails some kind of semantic content with verification con-
ditions (e.g. truth-conditional ones). In this paper, we
always mean the former, probabilistic sense of ‘belief’; and
we will use the terms ‘belief’ and ‘probability density’
interchangeably.

With that caveat in place, Bayesian mechanics is special-
ized for particular systems that have a partition of states,
with one subset parametrizing probability distributions or
densities over another. Bayesian mechanics articulates math-
ematically a precise set of conditions under which physical
systems can be thought of as being endowed with probabilis-
tic (conditional or Bayesian) beliefs about their embedding
environment. Formally, Bayesian mechanics is about so-
called ‘particular systems’ that are endowed with a ‘particu-
lar partition’ [1]—i.e. into particles, which are coupled to,
but separable from, their embedding environment. By ‘par-
ticular system’ we mean a system that has a specific
(i.e. ‘particular’) partition into internal states, external states,
and intervening blanket states, which instantiate the coupling
between inside and outside (the ‘Markov blanket’). The
internal and blanket states can then be cast as constituting a
‘particle’, hence the name of the partition.2 Under the FEP,
the internal states of a physical system can be modelled as
encoding the parameters of probabilistic beliefs, which are
(probability density) functions whose domain are quantities
that characterize the system (e.g. states, flows, trajectories,
other measures).

In a nutshell, Bayesian mechanics is set of a physical,
mechanical theories about the beliefs encoded or embodied
by internal states and how those beliefs evolve over time: it
provides a formal language to model the constraints, forces,
fields, manifolds, and potentials that determine how the
internal states of such systems move in a space of beliefs
(i.e. on a statistical manifold). Because these probabilistic
beliefs depend on parameters that are physically encoded
by the internal states of a particle, the resulting statistical
manifolds (or belief spaces) and the flows along them have
a non-trivial, systematic relationship to the physics of the
system that sustain them. This is operationalized by applying
the FEP: we model the behaviour of a particular system by a
path of stationary action over free energy, given a function
(called a synchronization map) that defines the manner in
which internal and external states are synchronized across
the boundary (or Markov blanket) that partitions any such
dynamical system (should that partition exist). In summary,
Bayesian mechanics is about the image of a physical system
in the space of beliefs, and the connections between these rep-
resentations: that is, it takes the internal states of a particular
system (and their dynamics) and maps them into a space of
probability distributions (and trajectories or paths in that
space), and vice versa.

Two related mathematical objects form part of the core of
the FEP, and will play a key role in our account of Bayesian
mechanics: (i) ontological potentials or constraints and (ii)
the mechanics of systems that are driven by such potentials.
An ontological potential, on this account, is similar to other
potentials in physics, e.g. gravitational or electromagnetic
potentials. It is a scalar quantity that defines an energy land-
scape, the gradients of which determine the forces (vector
fields) to which the system is subject. Such potentials are onto-
logical because they characterizes what it is to be the kind of
thing that a thing is: they allow us to specify equations of
motion that a system must satisfy to remain the kind of
thing that it is.

Ontological potentials or constraints provide a mathemat-
ical definition of what it means for a particular system to be
the kind of system that it is: they enable us to specify the
equations of motion of particular systems (i.e. their character-
istic paths through state space, the way that they evolve over
time, the states that they visit most often, etc.), based on a
description of what sorts of states or paths are typical of
that kind of system. We review these notions in technical
detail in §§3 and 4. In particular, Bayesian mechanics is con-
cerned with the relationship between the ontological
potentials or constraints, and the flows, paths, and manifolds
that characterize the time evolution of systems with such
potentials, allowing us to stake out a new view on adaptive
self-organization in physical systems.

We shall see that this description via the FEP always
comes with a dual, or complementary, perspective on the
same dynamics, which is derived from maximum entropy.
This view is about the probability density that the system
samples under, and how that density is enforced or evolves
over time.3 We consider at length the duality between the
FEP and the constrained maximum entropy principle
(CMEP), showing that they are two perspectives on the
same thing. This provides a unifying point of view on adap-
tive, self-organizing dynamics, which embraces the duality of
perspectives: that of adaptive systems on their environment
(and themselves), and that of the ambient heat bath, in
which they are embedded (and into which all organized
things ultimately decay).

These points of view might seem opposed, at least prima
facie: after all, persistent, complex adaptive systems appear
organized to resist entropic decay and dissipation; while
the inevitable, existential thermodynamic imperative of all
organized things embedded in the heat bath is to dissipate
into it [9]. The resolution of this apparent tension is a core
motivation for dualizing the entire construction. Just as we
can think of controlled systems that maintain their states
around characteristic, unsurprising set-points [2]—despite
perturbations from the environment—we can view a self-
organizing system as a persistent, cohesive locus of states
that is embedded within an environment, and which is
countering the tendency of the environment to dissipate
it. This ‘agent–environment’ or ‘relational’ symmetry is
fundamental to almost all formal approaches to complex
systems, which are rooted in the interactions between open
systems [38–43], making it an attractive framework for
understanding complexity.

In particular, self-organization can be viewed in two
ways. One is from the perspective of the ‘self’, inhabiting
the point of view of the individuated thing that is distinct
from other things in its environment. From this perspective,
provided by the FEP, one can ask how particular systems
interpret their environment and maintain their ‘selves’—the
kinds of structure typical of the kind of thing that they are.
This requires engaging in inference about the causes of
internal or sensory states. Dually, one can view this from
the perspective of ‘organization’—i.e. from the outside peer-
ing in, modelling what it looks like for a structure to remain
cohesive, and not dissipate into its environment over some
appreciable timescale. This latter perspective is like asking
about the internal states of some system, rather than the beliefs
carried by internal states (as one might under an FEP-theoretic
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lens). That both stories concern the self-organization of the
system, but model it in different ways, is no accident.

In the same, dual sense, asking about organization is like
being an observer or a modeller situated in the external
world, formulating beliefs about the internal states of a par-
ticular system. These viewpoints are equivalent, in that they
tell the same story about inference and the dynamics of
self-organization. This duality allows us to view the FEP
and Bayesian mechanics through a number of complemen-
tary lenses. The advantage to changing our perspective is
that we can compare the FEP to the view from maximum
entropy, which is more familiar in standard mathematics
and physics. In particular, it should provide us with a sys-
tematic method to relate the dynamics and mechanics of
organized systems to the dynamics and mechanics of the
beliefs encoded or embodied by these organized systems,
recovering fundamental predecessor formulations to Baye-
sian mechanics and the FEP in the language of the physics
of self-organization.

The argumentative sequence of this paper is as follows.
The overall paper is divided into three main parts. The first
part of the paper is written as a (relatively) reader-friendly,
high-level descriptive summary of the FEP literature, which
spans nearly two decades of development. We first offer
some preliminary material on dynamics, mechanics, field the-
ories, and principles, and provide some motivation for the
emergence of Bayesian mechanics. We then discuss the state
of the art of Bayesian mechanics in quite some depth. We pro-
vide a narrative review the core formalisms and results of
Bayesian mechanics. We comprehensively review the FEP
as it appears in the literature, and distinguish three main
ways in which it has been applied to model the dynamics
of particular systems. We call these path-tracking, mode-track-
ing and mode-matching. The second part of the paper
introduces, again at a high level, a new set of results that
have become available only recently, which concern the dua-
lity between the FEP and the principle of maximum entropy
subject to a particular constraint; and which are more math-
ematically involved, drawing in particular on gauge theory.
We make a short detour to discuss gauge theories, maximum
entropy, and dualization. With this in place, we examine the
duality of the FEP and the CMEP. The final part of the paper
discusses the burgeoning philosophy of Bayesian mechanics.
We discuss the implications of the duality between the FEP
and the CMEP for Bayesian mechanics, and sketch some
directions for future work. Finally, taking stock, we chart a
path to a generalization of this duality to even more complex
systems, allowing for the systematic study of systems that
exist far from equilibrium and elude steady-state densities
or stationary statistics—an area of study that we designate
as G-theory, covering the duality of Bayesian mechanics of
paths and entropy on paths (or calibre), and beyond.

The reader should note that this paper is not a standalone
treatment of the Bayesian mechanics and the free energy prin-
ciple, and should instead be seen as a more conceptually
oriented companion paper to the technical material that is
reviewed; as such, we will often opt for qualitative descrip-
tions instead of explicit equations, and refer the reader to
the technical material for detailed examinations of assump-
tions and proofs. It should be noted that the fields
encompassing Bayesian mechanics, the free energy principle,
and the maximum entropy principle are inherently technical
ones that presuppose and leverage detailed formal constructs
and concepts. We aim for this paper to be relatively self-con-
tained, and provide some introductory material to facilitate
reading; but we assume that the reader has a working knowl-
edge of dynamical systems theory (specifically, the state or
phase space formalism), calculus (especially ordinary and
stochastic differential equations), and probability or infor-
mation theory. A familiarity with gauge theory is also
useful in reading the second main part of the paper. The phi-
losophical denouement of the paper should be accessible to
readers with relatively little background in mathematics
and physics.
2. An overview of the idea of mechanics
Before diving into Bayesian mechanics proper, we begin by
reviewing some of the core concepts that underwrite contem-
porary theoretical physics.

In formal approaches to the study of physics, a descrip-
tion of the behaviour of a specific object is the very bottom
of a hierarchy of theory-building. As discussed in the
Introduction, the dynamics of a system constitute a descrip-
tion of the forces to which that system is subject, which is
typically specified via laws or equations of motion (i.e. a
mechanics). Before we can derive a mathematical description
of the behaviour of something, we need a large amount of
other information accounting for where those equations of
motion come from. A mechanical theory, for instance, is a
mathematical theory that tells us how force, movement,
change and position relate to each other. In other words,
mechanical theories tell us how a thing should behave; and,
given some specific system, we can use the mechanical
theory to specify its dynamics. This distinction between
a phenomenological (or merely descriptive) model and a
physical, mechanical theory usually lies in that mechanical
theories can be derived from an underlying principle,
like the stationary action principle. Thus, the resultant
mechanical theory specifies precisely what systems that
obey that principle do—and conversely, the principle pro-
vides an interpretation of that mechanical theory, given
a set of system-level details relevant for the sought
dynamical picture.

The word ‘theory’ is polysemous. A quick overview of
the key notions in the philosophy of scientific modelling
is useful to clarify what we mean here (see [44] for an
excellent overview; also see [45–47]). What we have called
‘dynamics’, ‘mechanics’ and ‘principles’ are, ultimately,
mathematical structures (in mathematics, these are also
called mathematical theories). The content of a mathematical
theory or structure is purely formal: e.g. clearly, the axioms
and theorems of calculus and probability theory are not
intrinsically about any real empirical thing in particular.
What are usually called ‘scientific theories’ or ‘empirical
theories’ comprise a mathematical structure and what
might be called an empirical application, interpretation or
construal of that structure, which relates the constructs of
the mathematical structure to things in the world, e.g. to
specific observable features of systems that exist.4

It is sometimes said that principles in physics, such as the
principle of stationary action, are not falsifiable, strictly speak-
ing; and this, despite playing an obviously prominent role in
scientific investigation, which is ultimately grounded in
empirical validation (at least prima facie). We can make
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sense of this in light of the distinction between mathematical
theories (i.e. what we have called mechanical theories and
principles) and their empirical applications. The resolution
of the tension lies in noting that absent some specific empiri-
cal application, mathematical structures are not meant to say
anything specific about empirical phenomena. Indeed, as [45]
and [6, remark 5.1] argue, the possibility of introducing
productive ‘abuses of notation’ by deploying one same math-
ematical structure to explain quite different phenomena is
part of what makes formal modelling such a powerful
scientific tool in the first place.

We have said that dynamics are descriptive, but that they
are not necessarily explanatory. There is a long tradition of
argument according to which dynamical systems models
are not inherently explanatory (e.g. [48–50]), since they do
not necessarily appeal to an explanatory mechanism, and
instead provide a convenient formal summary of behaviour.
This is the main difference between, for example, Kepler’s
account of the motion of celestial bodies, which was merely
descriptive (and so, a dynamics according to our definition),
and Newton’s universal laws of motion, which provide us
with a mechanics, apt to explain these dynamics. That is,
Kepler’s laws of planetary motion are not really equations
of motion in the contemporary sense; they are description
of heliocentric orbits as elliptical trajectories, and do not pro-
vide an explanation of the shape of these orbits (e.g. in terms
of things such as mass and gravitational attraction, as
Newton would later do; and which we would label as
mechanics).

Since the pioneering work of Maxwell, nearly all of
modern physics has been formulated in terms of field theories.
After the turn of the twentieth century, all of physics was
reformulated in terms of spatially extended fields, due
to their descriptive advantages [51]. Fields are a way to
formally express how a mechanical theory applies to a
system within the confines of a single path on space–time,
a so-called world-line. That is, a field constrains equations
of motion to apply to specific, physically realizable trajec-
tories in space–time. (Likewise, most of modern physics
has been geometrized due to geometry’s descriptive advan-
tages [52]. Later, we will see that contemporary physics
augments the field theoretical apparatus with the geometric
tools of gauge theory.) Mathematically speaking, a field is
an n-dimensional, abstract object that assigns a value to
each point in some space; when that value is a scalar, we
call the field a scalar field, of which a special case is a potential
function. For example, the electromagnetic field assigns a
charge density to each point in space (i.e. the electric and
magnetic potential energies); the gradient of this potential,
in turn, determines the force undergone by a particle in
that potential. Similarly, a gravitational field assigns a value
to each point in space–time, in terms of the work per
unit mass that is needed to move a particle away from its
inertial trajectory.

We are concerned here with what we have called Bayesian
mechanics. In general, when one speaks about a mechanical
theory for some sort of physics—such as quantum mechanics
(a theory describing the behaviour of things at high energies,
i.e. very small things moving very quickly, like quantum
particles), statistical mechanics (a theory producing the be-
haviour of systems with probabilistic degrees of freedom,
especially the ensemble-level behaviour of large numbers of
functionally identical things), or classical mechanics (a
theory producing the behaviour of objects and particles in
the absence of noise or quantum effects, and at non-relativis-
tic speeds)—mechanics, which provide the equations of
motion that we are interested in, are themselves deduced
from some sort of symmetry or optimization principle. Mech-
anical theories can then be fed data about a specific system,
like an initial or boundary condition for the evolution of
that system, and the equation will return the dynamics of
that system.5

An example of a mechanical theory operationalizing a
mathematical principle, which thereby allows us to specify
the dynamics of a system, is in the fact that classical objects
obey Newton’s second law—i.e. that

m€q ¼ � @

@q
VðqÞ,

for the position q of some object at a time t, and a force on
that position, −(∂/∂q)V(q). Note that, as discussed above,
the force is expressed as the space-derivative (∂/∂q) of a
gravitational potential, V(q), with respect to position q.
Newtonian classical mechanics, which is embodied by
this equation, gives us the dynamics (i.e. a trajectory) of
some classical object when we specify precisely what the
potential V(q), initial velocity _qð0Þ, initial position q(0),
other appropriate boundary conditions, and finally the
domain, are.

If, instead, we had specified energy functions for our
system based on the force observed, we could have produced
the dynamics of this object via Lagrangian mechanics. In clas-
sical physics, and more generally, a quantity which
summarizes the dynamics of a system in terms of the
energy on a trajectory through the space of possible states,
or path, is called a Lagrangian [53]. Physically, this is defined
in terms of a kinetic energy. We can use a Lagrangian to
determine the principle from which classical mechanics fol-
lows. Letting _qðtÞ ¼ v, Newton’s second law comes from
the principle of stationary action, since the variation of the
following integral of the Lagrangian along a path,

S½qðtÞ� ¼
ð
mv2

2
� VðqÞdt,

yields the Euler–Lagrange equation

0 ¼ m
2
@
�
v2 � VðqÞ�

@q
� d
dt

m
2
@
�
v2 � VðqÞ�

@v
,

when minimized. The integral mentioned is called an action
functional, and the variation of the action leads to a rule
describing any path of stationary action [54]. We can see
this in our example: the Euler–Lagrange equation reduces to

0 ¼ � @

@q
VðqÞ �m

@

@t
v

)

m€q ¼ � @

@q
VðqÞ

after some algebra. This is Newton’s second law (noting that
the acceleration a is the second derivative of position, i.e. a =
€q). This result is a summarization of the fact that systems tend
not to use6 any more energy than they need to accomplish
some motion (see [55] for a pedagogical overview); this trans-
lates to the use of the least possible amount of energy to
perform a given task. In other words, along the path of



q1 at
time t1

q2 at
time t2

small variations
(at most second order)

other possible actions

minimum of the action
(i.e. gradients = 0)

Figure 1. Depiction of the principle of stationary action. This figure shows
that the path of least action (darker blue) is the path which is a stationary
point of the action—a path for which the gradient of the action is zero.
Here, the trajectory is a parabola, like the kind of path one might observe
through a gravitational field. On this path, the action changes at most quad-
ratically under the variations in yellow. Other paths in lighter blue are less
‘ideal’, in that they break the precise balance between kinetic and potential
energies. That is, these paths do not move in the potential well.
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stationary action, the change in potential energy is precisely
equal to the change in kinetic energy (i.e. their difference is
zero), such that no ‘extra’ energy is used, and no ‘extra’
motion is performed. The fact that the accumulated difference
in kinetic energy and potential energy is zero reflects this
desired law for the exchange of the two quantities—indeed,
this is what underwrites the conservation of energy in phy-
sics more generally. It is also what justifies the observation
that systems tend to accelerate along forces, and do so by pre-
cisely the force applied—no more, and no less. As such,
classical mechanics tells us that systems accelerate along
forces because they conserve their energy and follow paths
of stationary action (i.e. paths over which its variation is
zero), and conversely, the theory of classical mechanics
comes from the stationary action principle. See figure 1.

For us, important examples of a principle (with are
accompanied by mechanical theories) include the principle
of stationary action (which we have just discussed), the maxi-
mum entropy principle, and the free energy principle.
According to Jaynes, the maximum entropy principle is the
principle whereby the mechanics of statistical objects lead
to diffusion [56–58].7 Likewise, the FEP is the principle
according to which organized systems remain organized
around system-like states or paths, and the mechanical
theory induced by the FEP can be understood as entailing
the dynamics required to self-organize. We can understand
the former as statistical mechanics—the behaviour of particles
under diffusion—and we have called the latter Bayesian
mechanics. Interestingly, to every physical theory is paired
some sort of characteristic geometry, such as symplectic geo-
metry in classical mechanics; moreover, as discussed,
mechanical theories are usually seen as the restrictions of
field theories to a worldline. By focusing on the aspects of
the FEP that relate a physical principle of symmetry to a
mechanical theory for the dynamics of some given system,
we implicitly introduce notions of geometry and field
theory to the FEP, both of which are enormously powerful.
We review these ideas in §§5 and 6.
3. The free energy principle and Bayesian
mechanics: an overview

This section reviews key results that have been derived in the
literature on the variational FEP, situating them within the
broader Bayesian mechanical perspective. We first provide a
general introduction to the FEP. We then outline a fairly com-
prehensive typology of formal applications of the FEP that one
can find in the literature; these are applications to different
kinds of systems with different mathematical properties,
which are not often distinguished explicitly. We begin by
examining the simplest and most general formulation of the
FEP, applied to model probability densities over paths of a par-
ticular system, often written in generalized coordinates of
motion. This general paths-based formulation of the FEP
assumes very little about the dynamics of the system, and
in particular, does not assume that a non-equilibrium
steady state with a well-defined mode exists. We then turn
to a formulation of the FEP in terms of the dynamics of a
probability density over states (i.e. the density dynamics formu-
lation of the FEP). This density dynamics formulation, in
turn, has taken two main forms in the literature, where the
external partition of states has, and does not have, any
dynamics to it, respectively. The density dynamics formu-
lation makes stronger assumptions than the paths-based
formulation, namely, that the mechanics of the system
admit a steady state solution, which allows us to say specific
things about the form of the flow of a particular system. We
discuss a result known as the approximate Bayesian inference
lemma that follows from the density dynamics formulation.
See figure 2.

3.1. An introduction to the free energy principle
In §2, we said that principles are mathematical theory or
structure that are used to write down mechanical theories
for a given class of systems. The FEP is precisely such a math-
ematical principle, which we can leverage to write down
mechanical theories for ‘things’ or ‘particles’, defined in a
particular way. The FEP is the mathematical statement that
if something persists over time with a given structure, then
it must encode or instantiate a statistical (generative) model
of its environment. In other words, the FEP tells us that
things that maintain their structure in an embedding environ-
ment necessarily acquire the statistical structure of that
environment.

Like most of contemporary statistical physics, the FEP
starts from probabilistic description of a system—usually, a
system of stochastic differential equations (SDEs). SDEs are
used to describe the time evolution or flow of a system (i.e.
to write down a mechanical theory) in the space of possible
states or configurations that it can occupy (what is known
as the state or phase space of that system). The SDEs allow
us to formulate mechanical theories to explain dynamics
with a deterministic component (also known as the drift of
the SDE) and a stochastic component (the noise of the SDE).
In the absence of noise, an SDE reduces to an ordinary differ-
ential equation (ODE), whereby the system evolves
deterministically in the direction of the flow.



free energy principle

Bayesian mechanics

density over states density over paths

dynamic mode no single mode

path-tracking dynamicmode-tracking dynamicsmode-matching dynamics

fixed mode

approximate Bayesian
inference lemma

NESS

no NESS assumption

Figure 2. Three faces of Bayesian mechanics. Under the FEP, we can define specific mechanical theories for beliefs, which defines what kinds of self-evidencing are
possible in a given regime of mathematical systems. The literature contains three main applications of Bayesian mechanics, which we represent as a tree with two
branching points. On the one hand, the FEP has been applied to densities over paths or trajectories of a particular system (the paths-based formulation of FEP,
leading to what we call path-tracking dynamics) and to densities over states (the density dynamics formulation), which depend on a NESS solution to the mechanics
of the system. The density dynamics formulation, in turn, applies to systems with a static mode, and to systems with a dynamic mode; we call the former mode-
matching, and the latter mode-tracking.
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Formal treatments of the FEP usually begin with a
physical system described by an Itô SDE of the form

_xðtÞ ¼ f ðxtÞ þ CjðtÞ,

where f (x) is the drift of the flow of x and ξ(t) is white noise;
heuristically, the time derivative of a standard Wiener process
dWt/dt. The volatility matrix C encodes the spatial directions
and magnitude of the noise and yields the diffusion tensor
G ¼ CC`

2 , which encodes the covariance of random
fluctuations.8

With such a general setup in place, most of contemporary
physics, from classical to statistical and quantum mechanics,
proceeds to ask whether we can say anything interesting
about the probability distribution of different paths or
states of the system. The probability distribution over paths
or states of a system is usually called a generative model in
the FEP literature [62]. In statistics, a generative model or
probability density is a joint probability density function
over some variables. In the FEP literature, the generative
model can be analysed in two complementary ways, leading
to two main formulations of the FEP: either as a density over
states, specifying their probability of being encountered (as
opposed to encountering surprising states); or as a density
over paths, quantifying the probability of that path (as
opposed to other, less probable paths). One can visualize
the generative model as a curved (probability density
shaped) surface over the space of states or paths of a particu-
lar system; the probability of a state of path is associated with
the height of the image of the function over the space of states
or paths.
The next step concerns the particular partition. We said that
the FEP applies to ‘things’ defined in a particular way, which
become models of their embedding environment. Clearly, to
talk about ‘a model’ necessitates a partition into two entities:
something that we can identify as the model, and something
being modelled. Accordingly, the FEP applies informatively
to ‘things’ defined in a particular way, via a sparse causal
dependence structure or sparse coupling, which is the key con-
struction from which the rest of the FEP follows [3,63,64].
In other words, the FEP is a principle that we can apply to
specify the mechanics of systems that have a specific, particu-
lar partition (i.e. into a thing that is a model and a thing that is
being modelled). For such a distinction to hold in physical
systems, it must be the case that the causal coupling between
the thing that instantiates the model and the thing that is
modelled evince some kind of sparsity. Consider the informal
proof by contradiction: if everything was causally affected by
everything else (i.e. if there was no sparse coupling, as in a
gas) over some meaningful timescale, then we would not
be able to speak of any one ‘thing’ as against a backdrop of
other things.

So, we partition the entire system x into four com-
ponents.9 Explicitly, we set x = (η, s, a, μ), where μ denotes
variables pertaining to the model (termed ‘internal states’
or ‘internal paths’), η denotes variables pertaining to the gen-
erative process (termed ‘external states’ or ‘external paths’)
and b = (s, a) denotes variables that couple internal and exter-
nal states—the Markov blanket—which, here, comprises
sensory and active states (or paths).10 Generically speaking,
the Markov blanket of the particular partition is precisely
the set of degrees of freedom that separate—but also
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couple—one particle (or open system) to another, within a
given overarching system [65]. For instance, in [66], the
Markov blanket becomes the variable whose space–time
path distinguishes one particle from another; this is similar
to the argument presented in [67]. The aim of introducing
a particular partition is exactly to introduce the degrees of
freedom allowing us to separate one system from another,
in such a way that they could in principle engage in inference
about (i.e. track) each other. In this sense, the Markov blanket
is not special—it simply entails separability given some
variable b.11

Sensory states are a subset of the Markov blanket: they are
those blanket states that are affected by external states and
that affect internal states, but that are not affected by internal
states. Active states are those blanket states that are affected
by internal states and that affect external states, but that are
not affected by external states.12

As indicated, this partition assumes sparse coupling [64,68]
among the subset of states or paths (i.e. some subset of the
partition evolves independently of another given the
dynamics of the blanket), which has the following form:

f ðxÞ ¼

fhðh, s, aÞ
fsðh, s, aÞ
faðs, a, mÞ
fmðs, a, mÞ

2
6664

3
7775 and

C ¼

Ch 0 0 0

0 Cs 0 0

0 0 Ca 0

0 0 0 Cm

2
6664

3
7775, ð3:1Þ

where we use subscripts to denote which subset to which
each flow applies. The key point to note is that the flow of
internal and active components (i.e. their trajectory through
state space) does not depend upon external components
(and reciprocally, the flow of external and sensory states or
paths does not depend upon internal states or paths). It
should be stressed that the blanket is an interface or bound-
ary in state space, i.e. it is not necessarily a boundary in
space–time [69] (although in some cases, it coincides with
one, e.g. the walls of a cell). The internal states (or paths)
and their blanket states (or paths) are generally referred to
as the particular states or paths (i.e. states or paths of a particle);
while the internal and active states (or paths) are together
called autonomous states or paths because they are not influ-
enced by external states (or paths).

The key point of this construction is that, given such a
partition, under the FEP, we can interpret the autonomous
partition of the particular system as engaging in a form of
Bayesian inference, the exact form of which depends on
additional assumptions made about the kind of sparse coup-
ling and conditional independence structures of the
particular system being considered [68]. The particular par-
tition is ultimately what licences our analogy with Bayesian
inference per se, because it licences our interpretation of the
internal states of the system as performing (approximate
Bayesian or variational) inference. In variational inference,
we approximate some ‘true’ probability density function p
by introducing another probability density called the vari-
ational density (also known as the recognition density),
denoted q, with parameters μ. Using variational methods,
we vary the parameters μ until q becomes a good approxi-
mation to p. In a nutshell, the FEP says that, given a
particular partition, the internal states of a particular system
encode the sufficient statistics of a variational density over
external states (e.g. the mean and precision of a Gaussian
probability density). This, as we shall see, induces an internal,
statistical manifold in the internal space of states or
paths—and accompanying information geometry.

As stated in §1, the point of this sort of inference is to
minimize the surprisal of particular states or paths of such
states. We encountered the idea of minimization of some
action as a principle for mechanics in a more general fashion
in §2. This remains the case here: we can write down the FEP
as a ‘principle of least surprisal’. When applied to different
kinds of formal systems, we get different types of Bayesian
mechanics, in the same sense as we get various sorts of
classical mechanics in different mathematical contexts,
depending on the assumptions made about the underlying
state spaces and action functionals (Newtonian or Lagrangian
mechanics, gravitational mechanics, continuum mechanics,
and so forth).

In [66,70], the surprisal on a path (and in particular, a path
conditioned on an initial state)

A½xðtÞ� ¼ � log pðxðtÞ j x0Þ
is suggested as an action for Bayesian mechanics. Here, x(t) is a
path of system states at a set of times parametrized by t. The
path of least action is the expected flow of the system, f(xt).

A crucial aspect of this formulation is that we can recover
Bayesian inference from theminimization of surprisal. Suppose
we apply the surprisal to paths of particular states, i.e.
π(t) = (a(t), s(t), μ(t)). Themechanics of π(t), in terms of themech-
anics of the beliefs that π(t) holds, is where the Bayesian
mechanical story starts. As we just said, the presence of this
particular partition implies the existence of a variational density

qmðhÞ ¼ pðh j pÞ ð3:2Þ
at a given time—in other words, a belief about external states
parametrized by internal states. Heuristically, we can think of
this as a probabilistic specification of how causes generate con-
sequences. Indeed, we can now say

�log pðpðtÞÞ ¼ Eq
�
log qðhðtÞÞ � log pðhðtÞÞ � log pðpðtÞ

j hðtÞÞ�,
and using arguments typical in variational Bayesian inference,
this allows us to claim that such systems do engage in inference,
via the identity

�log pðpðtÞÞ ¼ DKL½qðhðtÞÞkpðhðtÞ j pðtÞÞ� � log pðpðtÞÞ,
ð3:3Þ

which holds if and only if the system is inferring the causes
of its observations, such that (3.2) holds (in which case the
KL divergence above is zero). In that sense, any system
whichminimizes its surprisal automaticallyminimizes the vari-
ational free energy, licensing an interpretation as approximate
Bayesian inference.

In detail—crucially, this variational free energy is a func-
tional of a probability density over external states or paths
that is parametrized by internal states or paths (given some
blanket states or paths) and it plays the role of a marginal
likelihood or model evidence in Bayesian statistics. This is a
key step of the construction, because it connects the entropy
of the system to the entropy of its beliefs, i.e. the entropy of
the distribution over internal states H[ p(μ)] and the entropy
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of the variational (or recognition) density over external states,
parametrized by internal states H[q(η)].
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3.2. Applications of the free energy principle to paths,
without stationarity or steady-state assumptions

The simplest, most general, and in many ways most natural
expression of the FEP, is formulated for the paths of evolution
of a particular system [66]. It is often underappreciated that
the FEP was originally formulated in terms of paths, in
generalized coordinates of motion [71,72]; it is, after all, a
way of expressing the principle of stationary action, which
tells us about the most likely path that a particle will take
under some potential. Much of the mathematics of the
FEP goes back to work done in signal processing and Baye-
sian filtering, which is dynamical, and was developed for
neuroimaging [73,74]. It would, however, be inaccurate to
say that the work on the path integral formulation was aban-
doned in favour of other formulations. Indeed, the astute
reader will note that the main monograph on the FEP,
namely [1], was written (albeit sometimes implicitly) in
terms of generalized coordinates.

Whenwe operate in paths-based formulation, we operate in
what are known as ‘generalized coordinates’, where the tem-
poral derivatives of a system’s flow are considered separately
as components of the ‘generalized states’ of the system
[66,74,75]. We can use these generalized states to define an
instantaneous path in terms of the state space of a system,
because they canbe read as the coefficients of a Taylor expansion
of the states as a function of time [66,70]. In this formulation, a
‘point’ in generalized coordinates corresponds to a possible
instantaneous path, i.e. a trajectory over state space or ordered
sequence of states; and the FEP, as formulated over paths,
concerns probability densities over such instantaneous paths.

Formally, the paths-based formulation of the FEP says
that, for any given path of sensory states, the most likely
path of autonomous states (i.e. the path in the joint space of
internal and external states) is a minimizer or stationary
point of a free energy functional.13 This can be expressed as
a variational principle of stationary action, where the action
is defined as the path integral of free energy [66]; in the sense
that variations of the most likely path do not appreciably
change the integral along a trajectory of the free energy F, i.e.

_xðtÞ ¼ f ðxtÞ , dA½xðtÞ� ¼ 0, A½xðtÞ� ¼
ð
xðtÞ

FðxðtÞÞdxt:

See [65,66] for more details. There is no need, here, for
assumptions as to steady state densities or stationary
modes: this is a straightforward path of least action, where
autonomous states minimize their action.

A central application of this formalism is active inference,
where the path of active states is a minimizer of expected
free energy (EFE) [76].14 Denoting the action of a conditional
probability density as A[− |− ], we can formulate active
states as minimizers of an action,

_aðtÞ ¼ faðs, aÞ , dA½aðtÞ j sðtÞ� ¼ 0,

and thus of the EFE

G½aðtÞ� ¼ A½aðtÞ j sðtÞ�,
under certain exchangeability conditions [66,70]. Note that EFE
is very different from the variational free energy explored in the
density-over-states formulation of the FEP, in that EFE is not a
bound on surprisal. This is consistent with the fact that the den-
sity-over-paths formulation describes systems very differently
from the density-over-states formulation.

In short, under the FEP, we can say in full generality (i.e.
without making any assumptions about stationarity or steady
state) that the existence of a particular partition, defined in
terms of sparse coupling of paths of internal and external
subsets of a particular system, licences an interpretation of
the most likely internal and active paths, given sensory
paths, as instantiating an elemental form of Bayesian infer-
ence.15 Thus, the dynamics of such systems appear to
engage in path-tracking dynamics: autonomous paths look
as if they track (i.e. predict) external paths. This is sometimes
called self-evidencing [6,79]. This has both a sentient aspect
(i.e. responsive to sensory information [80]) and an elective
or enactive aspect (i.e. decision- and planning-related [8]).
Formally, these are attributed to the internal and active
paths, respectively; and in the case of the latter, following a
path of stationary action (i.e.minimizing EFE) is known as
active inference.

There are two aspects to the notion of prediction in this
setting. The first is that these equations of motion constitute
mechanical theories, as we have defined them; they provide
the laws of motion that explain the dynamics of a system.
As such, they constitute a predictive (i.e. generative) model
that allows us (as experimenters or modellers) to predict the
behaviour of systems, given some initial conditions, as in
[81]. A complementary aspect is the kind prediction in
which the particles that we are modelling engage. Briefly, if
a system has a particular partition, then it will look as if sub-
sets of that system (i.e. internal and external states) track each
other, or equivalently, infer the statistical structure of each
other. This allows us to make predictions (as modellers)
about the kinds of inferences or predictions that are made
by particles themselves.

We should note that this result is more minimalistic
than the ones we review next. In particular, it says nothing
about the specific form of the flow taken by autonomous
states (indeed, this formulation leaves open an entire equival-
ence class of trajectories that minimize the variational
free energy equally well, a more general problem for
inference [58]).
3.3. From paths of stationary action to density
dynamics: applications of the free energy principle
to systems with a steady-state solution

This section moves to the density dynamics formulation of
the FEP. Recent literature on the FEP (circa 2012–2019) has
tended to focus on the density dynamics formulation,
which defines a probability density over states that evolves
over time, as opposed to a probability density over paths.
In this setting, we are still dealing with paths of stationary
action. However, in the new setting, we assume that the
statistics of the underlying probability density have a some-
thing called a steady-state solution. We discuss a result
known as the approximate Bayesian inference lemma (ABIL),
which takes on two main forms in the literature, depending
of the statistics of the target system. Additional assumptions
can be made about the about sparse coupling and conditional
independence of a particular system. When they are, they
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are helpful in that they make some of the mathematical
derivations simpler and also, importantly, in that they
allow us to say more informative things about the flow of
target systems.

The density dynamics formulation has been explored for
a number of reasons. The first is that non-equilibrium steady
state, which features the breaking of detailed balance and
a recurrence implied by solenoidal flow (see below), is an
interesting model of biorhythms and other biological regu-
larities. As such, looking at how far one can go under the
assumption of a steady state density is an interesting exercise
for modelling purposes. Since the path-based formulation
is asymptotically equivalent to the density dynamics formu-
lation (i.e. since maximum calibre is asymptotically
equivalent to maximum entropy), nothing is lost by looking
at the more restricted, special case—provided, of course,
that the limitations of this approximation are noted. The
second reason is pedagogical: it is that the derivations of
the relevant equations of motion are less involved in ordinary
coordinates when one assumes a steady state density.

The reader should note that, perhaps a bit confusingly, to
say that a system is at steady state, or has a steady state sol-
ution, is not a characterization of the states of a system per se,
but rather a characterization of the time evolution of the under-
lying probability density of the system. To say that a system has
a steady state solution means that, if left unperturbed, the
system would flow on the manifold defined by that solution
until it arrives at a stationary point—or orbit—of that sol-
ution, where the variation of the action is zero. To say that
the system is at steady state, in turn, means that the density
dynamics have stopped evolving and is now at—or near, in
the presence of random fluctuations—a stationary point of
its action functional, at which the action cannot further be
minimized. It does not mean that the system has evolved to
a fixed point.

More formally, when the FEP is applied to the density
over states, as opposed to paths, we assume that the
equations of motion for the system admit a non-equilibrium
steady-state (NESS) density. Formally, a NESS density is a
stationary solution to the Fokker–Planck equation for the
density dynamics [82] describing (3.1). The assumption that
this density exists makes the FEP less generally applicable
(how much less is still being debated; see [83] and the
responses to that paper); but under these conditions, it can
be used to say interesting things about flow of self-organizing
systems.

Under the FEP, a NESS density satisfies the following
properties:

1. The NESS density obeys the dependency structure of a
Markov blanket [68,70], i.e.

pðm, h, bÞ ¼ pðmjbÞpðhjbÞpðbÞ: ð3:4Þ

2. The flow vector field f under the NESS density can be
written, via the Helmholtz decomposition (see figure 3),
in the form [2,3]

ðQðxÞ � GðxÞÞrJðxÞ � LðxÞ, ð3:5Þ

where Q(x) is a skew-symmetric matrix, QðxÞ ¼ �QðxÞT ,
GðxÞ is positive semidefinite matrix, J(x) is a potential
function and r denotes the gradient operator. LðxÞ is a
term of the form

LðxÞi ¼
Xd
j¼1

@

@xj
(QijðxÞ � GijðxÞ),

where i is used to index the variables in x. LðxÞ contains
the sum of the partial derivatives of each entry in both
Q(x) and GðxÞ. It has been introduced as the ‘housekeep-
ing’ or correction term in the FEP literature [3,70].

3. The potential function J(x) in (3.5) equals the surprisal;
that is, J(x) =−log p(x), where p(x) is the NESS density
satisfying (3.4) [2,3].

The NESS assumption is interesting in particular systems
because it allows us to say something very fundamental
and informative about the kinds of flows that one finds in
such systems. In these formulations, the NESS density func-
tions as a potential function of a Lagrangian for the system’s
dynamics [70].

Crucially under the FEP, the surprisal, defined in the third
point of the above definition of the NESS density, can be cast
as the ontological potential of a system (when it exists). We
define an ontological potential as an abstract potential that
induces an attractor for the dynamics of some system. It is
ontological in the sense that it characterizes what it is to be
the kind of system being considered. This is simply because
the system is attracted to sets of states or paths that are
characteristic the kind of system that it is, by definition
(since they are attractor regions of that system).

An ontological potential can also be written as a set of con-
straints on what constitutes a system-like state. Indeed, as we
will see later, for the maximum entropy solution to an inference
problem, the log-probability is equal to the constraints on
the particular system—so it is also a potential in the literal
sense of constraining the particular system to visit a set of
characteristic states. That is, mathematically, we can think of
the surprisal as a potential, analogous to a gravitational or elec-
tromagnetic potential, the gradients of which allow us to
specify the forces to which the particular system is subject.
These determine its evolution in state space, as well as in the
conjugate belief space. (Correspondingly, the log-probability
of a probability density constrained to weight states in a certain
way reproduces that weight, i.e. that

pðxÞ ¼ exp�JðxÞ , log pðxÞ ¼ �JðxÞ:

Wewill explore this further in the notion of an ontological con-
straint, which is dual to the notion of an ontological potential,
and introduced in §5.)

When we consider the statistics of sampling dynamics
that converge towards the mode of an intended NESS density,
the ontological potential acquires another interpretation in
terms of the system’s preferences [1,84–88]. We can view the
NESS density as providing a set of prior preferences which
the particular system looks as if it attempts to enact or
bring about through action [2]. Indeed, we can think of this
solution to the dynamics as a naturalized account of the tele-
ology of cognitive systems [7,89].

With these assumptions in play, we can derive a stronger
version of the claim that particular systems engage in a form
of approximate Bayesian inference. This ABIL can be stated as
follows: when a system has a steady-state solution, we can
define a synchronization map that systematically relates the
conditional mode of external states to that of internal states.16
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Under these conditions, we can say that the particular looks
as if it performs inference about an optimal conditional
mode, by internally encoding the statistics of the outside
environment. The ABIL itself says that under a synchroniza-
tion map and a variational free energy functional (or its
equivalent), this mode matching is both necessary and
sufficient for approximate Bayesian inference [6].

We can define the synchronization map σ formally. The
map σ is a function that sends the most likely internal state,
given a blanket state, to the most likely external state, given
that same blanket state. These internal states are what really
flow on variational free energy, a variational ‘move’ that
allows us to talk about inference—since this flow shares the
same minimum as the flow on surprisal, we can read these
states as performing inference. As we said, this licenses an
interpretation of the dynamics of a system as instantiating
an elemental form of approximate Bayesian inference [91].

Let m̂b be the maximum a posteriori estimate arg max
pðm j bÞ, and μ(b) be a function taking b to m̂b (and identically
for η). Usually, there exists a synchronization map

sðm̂bÞ ¼ ĥb,

m̂b ¼ argmax pðm j bÞ
and ĥb ¼ argmax pðh j bÞ,

described in [1,2,31,83]. We can depict this relation in the
following diagram (adapted from [2]):

where B is the set of possible blanket states, and where we
have assumed, for illustration’s sake only, that μ is invertible.

To elaborate more informally, what this means is that, for
every blanket state, there is an average internal state or
internal mode that parametrizes a probability density over
or belief about an average external state or external mode
[2]. The claim behind the ABIL is that systems which match
these conditional modes across a Markov blanket are storing
models of their environment (or, can be read as such) and
thus are engaging in a sort of inference. One should note
that the existence of μ−1 is not guaranteed: we can prove
that σ exists if and only if μ−1 is invertible on its image, i.e.
is an injection (see [2] or [6]), but a priori cannot claim that
μ−1 necessarily exists on any domain. That said, it is impor-
tant to also note that we do not at all need μ to be bijective.

Furthermore, note that—given its dependence on the
existence of a NESS solution to the mechanics of a particular
system—this description is only taken to hold in the
asymptotic limit [32,33,92].

Now, the conditional external mode may or may not
have any interesting dynamics to it. This is where we encounter
the second arm of the typology of formal applications (figure 2),
as the FEP applies informatively to the former case, and vacu-
ously to the latter. For instance, in the class of one-
dimensional linear systems analysed in [83], there are no
dynamics to the mode at all: the only source of variation in the
flow is the random fluctuations. As discussed in [92], in linear
systems, the dynamics simply dissipate to a stationary fixed
point and remain there. Now, a system that conforms to the
FEP will still match the external mode via the synchronization
map, but since there are no dynamics to the external mode, by
construction, there can be no proactive ‘tracking’ that might be
interpreted as sentient, proactive sampling. Accordingly, [83]
find that free energy gradients in these cases are uninformative
about the real dynamics of the system; but this is because there
are no dynamics about which to say anything interesting. We
can think of this behaviour as mode matching, a kind of static
Bayesian inference (e.g. apt to describe Bayesian inference that
statisticians apply to data under a general linear model).

In systems where there is a dynamical aspect to the external
mode, we instead obtain a much richer, proactive kind of mode-
tracking behaviour, where the external state is changing over
time. In these conditions, the internal modewill seem to be track-
ing the externalmode. Sincemode tracking entails themost likely
flow following thedeterministic component of equation (3.1), this
is like the classical limit—i.e. the limit of infinite certainty—of
the path integral of free energy [70]. That is to say, certain mode
tracking particular systems are macroscopic Bayesian ‘particles’
for which we can ignore random fluctuations.

The following of a mode as beliefs change induces a conju-
gate information geometry and a corresponding flow on the
conjugate statistical manifolds, in the sense that such a system
performs inference at each time point to determine what
belief its internal state should be parametrizing, and flows
towards that optimal parameter [31,92]. As indicated, in one
case, we consider the ‘intrinsic geometry’ of probability den-
sities defined over the physical states (or paths, i.e. sequences
of states) of a system, i.e. the probability of these states or
paths; and in the other case, we consider the ‘extrinsic geome-
try’ of probability densities that are parametrized by these
states or paths, i.e. we treat them as the parameters of probability
densities over some other set of states or paths (see [1,93]).

In §4, we will see that we can use the technology of the
CMEP to reformulate the ontological potential (i.e. the
NESS potential) as a set of constraints against which entropy
is maximized as the system dissipates.
3.4. Some remarks about the state of the art
Before turning to the CMEP and its connection to the FEP, we
comment on some important developments in the technical
literature on the FEP. Recent work [83,94] has questioned
whether Markov blankets are as ubiquitous as claimed by
theorists of the FEP. We briefly address this work. In sum-
mary, we argue that Markov blankets (as defined in the
appropriate sense, in terms of a particular partition) are ubi-
quitous in physical systems: essentially all physical systems
feature Markov blankets.

According to the so-called sparse coupling conjecture
(SCC), all sufficiently large, sparsely coupled, random dynami-
cal systems have a Markov blanket, defined in the usual way.
Recent work has shown that the SCC holds generically in an
approximate form for systems with quadratic surprisals
(including quadratic surprisals with state-dependent Helm-
holtz matrices). That is, we now know that as an extremely
generic class of random dynamical system increases in size
(i.e. as they becomehigher dimensional), the probability of find-
ing a Markov blanket in the system, defined in the appropriate
way (i.e. between subsets of a particular partition), tends to one.
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In [64], a weakened version of the SCC is proven. The
cited results show that the Hessian condition used to investi-
gate Markov blankets, even in a large class of nonlinear
systems, is obtained as dimension increases. Those results
build on previous work [68], which identified a sufficient
condition for claiming that a system displays a Markov
blanket in the case of systems with Gaussian steady-state
densities. This condition is that the inner product of the Hes-
sian of the steady-state distribution of the system (the entries
of which encode the curvature, or double partial derivatives,
of the surprisal) and the matrix field that captures solenoidal
part of the flow be identically zero. When this inner product
is identically zero, we always have a Markov blanket in the
appropriate sense. Now, in [68], it was merely conjectured
that the probability of finding a blanket increases with the
size of the system considered. The intuition was that, as a
system increases in size, there is more ‘room’ for it to be
sparse, and thereby, to evince a Markov blanket between sub-
sets. In [64], it is proven that the Markov blanket property
holds with probability one for many coupled random dyna-
mical systems of sufficient size. The proof involves defining
a ‘blanket index’, which scores the degree to which the
inner product discussed is nonzero. Using this technology,
one can explicitly quantify the degree to which systems
depart from the strict Markov blanket condition. More inter-
estingly, the probability of the blanket index vanishing tends
to one with dimension. Crucially, most physical systems are
large in the relevant sense. A mere teaspoon of water, for
instance, contains approximately 1023 molecules. The brain
contains 100 billion neurons, with each individual neuron
making thousands of connections. Other examples abound.

Now, it may be true that the results in [94] undermine the
original derivation of the ABIL, as it can be found in the well-
known paper [95]. However, newer work has re-derived the
ABIL using conventional mathematics [6]. The results in
[94] only pertain to the derivations found in [95]; and we
note that the latter is also critically discussed in [63]. Thus,
the appropriate conclusion to draw from [94] is that one
ought not to cite [95] to make points about the ABIL or the
Markov blanket property; and more subtly, that one should
move on from that formalism. But we have independent
reasons to believe that the ABIL is true; and indeed, the
literature has moved on from that formalism.

As discussed above, it would bemisleading to conclude that
the FEP does not apply to the systems analysed in [83]. The
application of the FEP is uninformative because that work
focuses on linear, low-dimensional mathematical edge-cases,
i.e. systemswith a small number of states [92,96].More precisely,
the paper considers whether the FEP can be applied usefully to
one-dimensional dissipative systems; physically, these are
coupled, dampened springs with one degree of freedom each.
The paper cogently shows that it is difficult to construct a
Markov blanket for such systems. However, this does not under-
mine the FEP or the obtaining of theMarkov blanket property in
the general case. Instead, these results constitute an interesting
application of the FEP to very low (i.e. one) dimensional,
linear systems. As such, the conclusion to draw from this
work is not that the Markov blanket property does not obtain
in general, but rather, that Markov blankets are rare or difficult
to construct in small, low dimensional systems; but they
remain ubiquitous in appropriately large ones (which comprise
most physical systems). Thus, the FEP is not a ‘theory of every-
thing’ in the sense that it could be applied informatively to
any kind of mathematical system whatsoever—it is only a
theory of everything that features a Markov blanket. Indeed,
[83] shows that the FEPapplies vacuously to all sorts of systems;
e.g. it applies to, but has nothing particularly interesting to say
about, linear stochastic systems. This is by design: there is
nothing interesting to say, FEP-theoretically, about such systems.

In summary, the FEP is a method or principle that applies
to ‘things’ that are defined stipulatively in terms of Markov
blankets, sparse coupling, and particular partitions. The
FEP is not concerned with systems that do not contain any
‘thing’, so defined. On this view, the critical literature above
focuses on whether or not any given system can be parti-
tioned into some ‘thing’ and every ‘thing’ else. If it can,
then the FEP applies—but not otherwise.
4. Some mathematical preliminaries on the
maximum entropy principle, gauge theory
and dualization

In the Introduction, we discussed how changing our perspec-
tive on self-organization entailed an exchange of points of
view across a boundary: rather than asking how a particular
system or particle maintains its ‘self’ and what beliefs it ought
to hold about the environment, as the FEP is interested in, we
can instead ask what that self is, and what it looks like from
the perspective of an outsider observing the system. Likewise,
to dualize the objects that we ask about also implies dualizing
our application of Bayesian mechanics, to ask about our beliefs
about a system, rather than the beliefs encoded or carried by the
system. The idea, then, is thatwe can leverage this dual perspec-
tive to model self-organization as we conventionally would,
restoring the symmetry of the problem and allowing us to
apply the FEP to model self-organized systems.

We have said that the FEP is dual to the CMEP. Duality in
this category-theoretic sense means that two objects, formally
called an adjoint pair, share some common set of intrinsic fea-
tures—but exhibit relationships to other objects in opposite
directions. An adjunction (the existence of an adjoint pair)
usually suggests some interesting structure hiding in a pro-
blem; in this case, it is the peculiar agent–environment
symmetry which is definitional of coupled systems that
infer each others’ states. It can be proven that exchanging
(i) free energy for constrained entropy and (ii) internal for
external states recovers all aspects of the ABIL and a simple
case of self-evidencing, and thus much of the FEP, especially
as it pertains to self-organization; see [6] for a proof of the
ABIL (lemma 4.2 and theorem 4.1).

Thus, the motivation for dualization is almost threefold:
(i) it recaptures the original spirit of the FEP, which is that
of an observer modelling an agent exhibiting self-organiz-
ation; (ii) it allows us to ground the mathematics of the FEP
in the well-established foundations of maximum entropy
and stationary systems at equilibrium; and (iii) it allows us
to extend the existing methods of the FEP to scenarios that
are new to the FEP literature, such as constraint-based form-
alisms. As a technical tool, changing our viewpoint
introduces constrained self-entropy as the dual to the free
energy of beliefs. In doing so, we can relate the FEP to exist-
ing insights in probability theory and dynamical systems
theory. This new viewpoint turns out to be independently
interesting for our reading of the FEP, and possibly extends
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it to new phenomena or systems. New approaches developed
for the maximum entropy principle (such as gauge-theoretic
results) reflect themselves in useful ways—within the FEP—
via this relationship.

We begin not with maximum entropy, per se, but with a
somewhat unconventional geometric view on the CMEP, to
be related later to the density over states formulation of the
FEP (and especially the Helmholtz decomposition). The
core elements of the CMEP needed for this particular con-
struction have their origins in gauge theory, a theory in
mathematical physics that relates the dynamics of particles
to the geometry of their state spaces. Later, this will allow
us to discuss the decomposition of flows under maximum
entropy in the same fashion as what exists under the FEP,
as well as tie it in explicitly to the updating of probability
distribution in response to changes in constraints. We rec-
ommend [97] as a reference with a good introductory tone,
and [98] or [99] for more details.

A gauge theory begins with a field theory like electromag-
netism or quantum electrodynamics (QED), describing the
dynamics of matter and the particles that comprise it. The
dynamics of ‘matter fields’ are typically described by apply-
ing a principle of stationary action (cf. §2) and thus are related
to a special integral called an action functional, which, as we
have discussed in §2, is a quantity that gets minimized by the
field (or in quantum field theory, a description of the field’s
most likely state). A functional, as we have said, is a function
of a function: in this case, the action functional is a function of
the Lagrangian of a system, which to repeat, summarizes the
energies involved in the mechanics of the system. It follows
that the minimizer of the action functional, which is a point
in a function space, gives us the configuration of the field
where the action is stationary.

In principle, the action functional gives us everything we
need to know about a matter field. However, in many field
theories, the action admits some sort of symmetry—this is a
transformation that leaves the action invariant, so that an arbi-
trary change in some particular quantity has no effect on the
equations of motion of the matter field predicted by the
action. A loose example includes the gravitational field
under changes in reference frame: the principle of general
relativity is that we do not have absolute coordinates in
which to describe physics, and things like motion appear
different from different perspectives, despite the underlying
physics being the same. Hence, gravity has a coordinate
invariance, which means it stays the same under changes in
coordinates: in other words, it has a symmetry under this
transformation. In other theories, we have other symmetries:
for instance, in QED, we can choose and change the complex
phase of a particle arbitrarily, with no change in the associ-
ated action. The quantity under which the theory is
symmetric is called a gauge. In gauge theory, the symmetry
itself is referred to as gauge invariance, which is characterized
by a free choice of gauge and invariance under changes in
gauge called gauge transformations.

One of the reasons why gauge theories are interesting is
because, unlike the action functional, the matter field itself
is generally gauge covariant; this means that it changes with
a change in gauge. While we can, in principle, deduce all
the information we need about a matter field from the
action functional, this symmetry is not manifest in the field:
the equation expressing the evolution of the field changes
with the choice of gauge. This is what is meant by covariance
(varying together). Imagine choosing a reference frame:
gauge symmetry only says that we can choose any new
frame and still observe motion consistent with the laws of
physics (e.g. motion which conserves total energy); but, the
expression of that motion within a frame is still dependent
on the choice of frame (for instance, choosing a moving
frame of reference will convert inertial trajectories into
moving ones, relative to that frame of reference). Gauge
covariance has a very literal relationship with the idea of
changing the coordinate basis in which we express the com-
ponents of a vector. (For an example of this, see figure 4.)

The tension between physical arbitrariness and math-
ematical relevance is what is captured by gauge theory, and
correspondingly, gauge theory gives us a way of speaking
about how one quantity varies another as it moves on
space–time. In gauge theory, this often records the way that
a force field varies the motion of a particle, and it records
the coupling of bosons (force-carrying particles) to fermions
(particles that comprise matter). An instructive example is
that of gravity, under general relativity. It is the principle of
general relativity that special relativity (i.e. the relativity of
motion with respect to the speed of light) can be extended
to any expression of motion which is accelerating relative to
some other expression of that motion. A consequence of
this view is that all non-inertial motion is identical to inertial
motion on a curved surface that causes some acceleration,
called the ‘equivalence principle’. The equivalence principle
was properly introduced by Albert Einstein in 1907, when
he observed that the acceleration of bodies towards the
centre of the Earth at a rate of 1g is equivalent to the accelera-
tion of an inertially moving body (i.e. not accelerating within
a frame of reference) that would be observed on a rocket in
free space being accelerated at a rate of 1g (its frame of reference
is accelerating). Again, this is the equivalence principle: accel-
erating reference systems are physically equivalent to
gravitational fields. As such, the curvature of space–time is
gravity. As summarized in [100], ‘there is no experiment
observers can perform to distinguish whether an acceleration
arises because of a gravitational force or because their refer-
ence frame is accelerating’. Now, it is mass that deforms
space–time, completing the analogy. Another truism, due to
John Wheeler, is that ‘space–time tells matter how to move;
matter tells space–time how to curve’.

The way mathematicians speak about gauge theory is via
a special kind of space called a fibre bundle. There are three
ingredients to our gauge theory: an ‘associated bundle’ E
with fibres F, where the matter field lives; the space that the
matter field lies over X, and the choice of gauge for the
matter field, which lives in a ‘principal’ bundle P. The
choice of gauge has the specific property that it transforms
the matter field when it transforms, so these two degrees of
freedom are linked, and both lie over some input or base
space, so those are linked too. Each field has a field state at
a point over the input space, so we think of this threefold
structure in terms of a space containing all of the possible
states of the matter field attached to each point in the input
space. This is a fibre bundle, so named because it looks like
a set of fibres sticking out of a base manifold, bundled all
together. We do the same for the choice of gauge at every
input point, and then couple the two bundles by associating
matter field states with choices of gauge.

At its mathematical core, the fibre bundle construction is
straightforwardly like a generalization of a function: at each
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Figure 3. Helmholtz decomposition. Splitting of flows referred to as the Helmholtz decomposition. The vertical direction consists of a gradient ascent given by G
and random fluctuations pushing the system away from a mode (preventing the system from collapsing to a point). The horizontal flow is a solenoidal, energetically
conservative but temporally directed flow, given by a matrix operator Q.
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input, there is a whole space of possible outputs or images,
which we bundle together across the whole input space. An
example of this is the fact that the xy-plane is a bundle of
real lines over points on the real line, arranged topologically
such that each fibre is at a right angle to the base, which
allows us to define real-valued functions of a single real
input. More complicated functions have a natural home in
this framework by changing what our fibres and input
space are. This includes the states of classical and quantum
fields on space–time. See figure 6.

We refer to the internal functions in a bundle, such as
f (x) = y in a real line bundle over the real numbers R, as sec-
tions. One can imagine the image of a section, for instance, a
set of y values tracing out a path in the plane parametrized by
points in the base, as a cross section of the bundle, slicing it
along that path. Thus, sections are functions that generate
slices of the bundle. Sections lift paths in the base to paths
in the bundle to produce such slices. Indeed, what we have
called a slice of the bundle (the image set of f (x), consisting
of a set of a particular set of y values) is actually called a lift.

Bundles generalize functions between spaces, and in par-
ticular, a bundle allows one to construct a function from a
base space to a bundle of other spaces called fibres. This
allows us to define fields as sections of a fibre bundle, since
they are functions that ‘reach’ into a bundle and pick a field
state at an input point on the base space. For example, a clas-
sical field is a section of some bundle: on every point of
space–time, we get a classical state, such that a classical
field is a lift from space–time into a field of states. This
example falls along the same lines as our distinction between
mechanics and dynamics, i.e. restricting a field to lie on a cer-
tain line in space–time produces mechanics, and feeding the
section on that line the input points we desire under some
form of the section gives a trajectory (i.e. dynamics).

Taking a path on space–time and lifting it into, say, a com-
plex line bundle gives us the complex phase of a quantum
particle. What that particle does is determined by the actual
equation of motion for the lift (its mechanics), which is the
degree of freedom that we identify with specifying a mechan-
ical theory for whatever particle it is. In turn, the mechanical
theory itself arises from the existence of such a lift. The full
picture, then, is that we have a fibre bundle over space–
time, which gives us a field-theoretic structure, whose lift at
a point is a mechanical theory. Indeed, a section of a complex
line bundle is a wavefunction, and inputting data like a par-
ticular potential function gives us a quantum equation of
motion.

The fact that the expression of the function—the frame of
reference for the matter field—is linked to the choice of gauge
by construction is the gauge covariance we defined previously.
Refer back to the threefold structure we defined earlier.

The last ingredients to complete our presentation of gauge
theory are the gauge field, gauge force, and connection. A con-
nection is a generalization of the derivative that allows us
to talk about how a choice of section varies across the base
manifold. Defining a connection is like inducing a fine top-
ology on the total space of the bundle, allowing us to map
infinitesimal changes in the base space to infinitesimal
changes in the bundle space. Thus, we can take derivatives
of paths through the bundle which are parametrized by a
path in the base. In this setting, the derivative itself is a gen-
eralized object called a tangent space, which is a collection of
tangent vectors (a vector field) which describes the ways that
a particle can flow from a given point in the base space. In
gauge-theoretic terms, the connection is the gauge field,
which tells us how a choice of gauge varies across space–
time. Paths which are flat in the connection are unforced,
while paths that curve out or are deflected from a flat plane
are experienced by the particle as a gauge force.

The connection also allows us to vary the constraints on
motion in the bundle space, and, allows us to define parallel
transport of points therein. We will discuss parallel transport
in particular later. We can now use this to make sense of
the covariance of p(x) and J(x) in maximum entropy, provid-
ing a justification grounded in physics for the unreasonable
effectiveness of approximate Bayesian inference, which we turn
to next.
5. On the duality of the free energy principle
and the constrained maximum entropy
principle

In this section, we leverage gauge-theoretic resources pre-
sented in §4 to provide a complementary (i.e. dual)
perspective on Bayesian mechanics under the FEP. We pro-
vide a brief recapitulation17 of results from [5,6], following
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Figure 4. Illustration of fibre bundles, sections and transformations. A fibre bundle exists on a base manifold, situated over points in that space. Here, the fibre is a
copy of the real line attached to each point in the base. Different choices of section of the bundle correspond to different choices of constraint function. The section is
a function which assigns coordinates in ‘probability space’—by which we mean values of probability, or specific points in the fibre F over some base point (x, y)—
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density due to a different choice of constraint function (A, B and C). The inset over F shows that all of these densities are sections over the same base space.
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[99, ch. 9] as a mathematical reference for gauge theory. This
section has two parts: moving from constraints to gauge sym-
metries, and from gauge symmetries to dynamics.

In this dual version of Bayesian mechanics, the ontologi-
cal potential of a system is expressed as a set of constraints
on the states of a system that one can specify using a vari-
ational maximum entropy procedure. This contrasts with the
NESS potential over states, which is written in terms of sen-
sory causes for those states. Correspondingly, an ontological
potential specifies the states that the system is likely to find
itself in (i.e. states that are typical of the system). However,
this does not tell us much about the systems dynamics
towards those states; these are largely governed by the sys-
tem’s horizontal (typically called solenoidal) and vertical
(dissipative) flows (figure 3). We will discuss that here.
5.1. From constraints to gauge symmetry
We previously mentioned that, in a certain mathematical
sense, gauge theory is the ideal way to speak about how
one quantity varies another quantity when it changes. This
covariance is precisely what occurs when probability is trans-
ported across the state space—when the constraint on a state
changes, so does the probability of that state, in the same pre-
cise way as a connection constrains the motion of dynamics in
a space. Consider the Lagrangian optimization condition that
the gradient of some function of interest equals the gradient
of the constraints up to a scaling (a constant called a Lagrange
multiplier), i.e. that

� @

@x
log pðxÞ ¼ l

@

@x
JðxÞ,



base manifold

fibres

Figure 5. Vector field on a curve. A connection in a bundle allows us to
define a tangent vector field along a curve. Here, the constraints applied
are directly constraints on the shape of such a curve, applied as a vector
field constraining the motion of some particle to lie in the gradient of a
potential. This particular path is curved, corresponding to a least action
path—a geodesic with respect to some (curved) connection. In this local
patch, we can also easily construct a flat connection with flat paths. We
refer to paths that are flat as horizontal lifts, and parallel transport of
points happens along these paths in particular.
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when entropy is maximized for a Lagrangian −log p(x)−
λJ(x). This is also known as the Euler–Lagrange equation
for the maximization of entropy, and the p(x) for which
this equation is true is the maximum entropy distribution.
The equation demands that the evolution of the surprisal
function log p(x) as a vector field is equivalent to the gradient
of some other function. The aim of this section is ultimately
to see how precise is the analogy between the above optimiz-
ation relationship and a potential function that constrains
the movement of a particle described by the image of
some section. We will use this as motivation to prove that
constrained maximum entropy actually constrains the prob-
ability density of interest, i.e. that under fixed constraints,
the density is constrained to have a shape such that the gra-
dient on p lies in the induced connection on an associated
bundle. See figure 5.

In some sense, the importance of this is not that this is a
gauge symmetry, in the conventional sense of a physical field
theory (though it is, as we will see, from the perspective of
the entropy functional). The power instead lies in the geo-
metric relationships brought to bear, and in particular, the
idea that when one changes the constraints of a system, one
also changes the vector field on a curve or surface telling us
how our assignment of probability should ‘move’ over the
state space. This is in the very same sense as of ‘movement’
as is instantiated by Bayesian updating: changing our prior
knowledge or constraints redistributes probability. Indeed,
this is the power of the formalism: to arrive at a geometric
view of Bayesian inference, both approximate and exact.

We will first show that this gauge symmetry exists. Then,
in the following subsection, we will use it to interpret gauge
covariance in the context of parallel transport. Parallel trans-
port licenses new interpretations of both belief updating and
the Helmholtz decomposition (or flow splitting) in the FEP
(figure 3), connecting it to well-established foundations of
mathematical physics.

The standard entropy functional to be maximized is

�
ð
pðxÞ log pðxÞdx,

subject to a constraint that some function on those states is on
average C, i.e.

ð
JðxÞpðxÞdx ¼ C, ð5:1Þ

for a total action of

S½x; J� ¼ �
ð
pðxÞ log pðxÞdx� l

ð
JðxÞpðxÞdx� C

� �
: ð5:2Þ

By (5.1), it is suggestive—if potentially naive—that the latter-
most term is zero. This observation means that any given
choice of J factorizes away. However, to produce a true
gauge theory, we also have to investigate what changing a
choice of J does to p. Under a change from J to some new
choice of constraint, J + J0, we deduce the following transform-
ation law for (5.2):

�
ð
e�lJ0ðxÞpðxÞ log e�lJ0ðxÞpðxÞdx

� l

ð
ðJ þ J0Þe�lJ0pðxÞdx

� �
: ð5:3Þ

In §2, we introduced the idea that the variation of the action
gives us the trajectory of a system, or some equation for that
trajectory that can be solved like Newton’s Law. Initially, it
follows that the action should give us a unique motion or
equation of motion for a system, and that different actions
will give us different least action paths. In a gauge theory,
however, the gauge symmetry expresses itself as a redundancy
in the possible trajectories of the system: there are multiple
possible gauge equivalent paths or field configurations for
the system. We can show this easily if we note that the
Euler–Lagrange equation for

arg maxpðxÞS½x; J�

is

@

@pðxÞ
��pðxÞ log pðxÞ � lJðxÞpðxÞ� ¼ 0

� log pðxÞ � lJðxÞ ¼ 0,

ð5:4Þ

which arises simply by taking the integrand of (5.2) and set-
ting the gradient of it equal to zero. The solution18 to this
problem is exp(− λJ(x)), the root of a particularly simple alge-
braic equation. Now we will try to do the same for (5.3).
Taking the same variation of S[x; J + J0] yields

@

@pðxÞ
�� e�lJ0ðxÞpðxÞ log e�lJ0ðxÞpðxÞ � lðJðxÞ

þ J0ðxÞÞe�JðxÞpðxÞ� ¼ 0:

Note that the integrand is more complicated, due to the trans-
formation law we defined. Using properties of the logarithm,
we can simplify the first term to

@

@pðxÞ
��e�lJ0ðxÞpðxÞð�lJ0ðxÞ þ log pðxÞÞ � lðJðxÞ

þ J0ðxÞÞe�JðxÞpðxÞ� ¼ 0:
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Figure 6. A probability density is generated by level sets of the constraint function. Here, it is shown that level sets of p are generated from lifts of level sets of J.
When flat, the gauge field descends to a vector field (properly a covector field) on the base whose integral curves are level sets J(x) = c. Horizontal paths are lifts of
these integral curves. They can be defined identically by the parallel transport through the bundle of a lifted point, and yield rings making up p(x).
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This allows us to factorize out e−λJ(x), yielding

e�lJ0ðxÞ @

@pðxÞ
��pðxÞð�lJ0ðxÞ þ log pðxÞÞ � lðJðxÞ þ J0ðxÞÞpðxÞ�

¼ 0:

Since an exponential function is always greater than zero, we
can drop this constant entirely—it has no effect on the zero
point of the gradient term. Some further algebra gives us
the following grouping of terms:

@

@pðxÞ
�ðlJ0ðxÞ � log pðxÞÞpðxÞ þ ð�lJðxÞ � lJ0ðxÞÞpðxÞ� ¼ 0:

We now take the derivative indicated, yielding the equation

ðlJ0ðxÞ � log pðxÞÞ þ ð�lJðxÞ � lJ0ðxÞÞ ¼ 0:

At this point in the calculation, it is obvious that the new con-
straint function cancels out. As such, we get our original
solution,

� log pðxÞ � lJðxÞ ¼ 0,

back. This recovers (5.4), completing the result.
In summary, we have shown that fixing a particular con-

straint J is arbitrary and also that changing that choice of
constraint is also arbitrary. Thus, the choice of constraint is a
degree of freedom in the specification of the mechanics of
the system that does not affect the action (i.e. changes leave
the action stationary). This generalizes a symmetry pre-
viously noted by Jaynes, in that re-parametrizations of a
constraint should not affect the resulting probability density
[18], which was re-introduced by Shore & Johnson [101] in
their axiom scheme for consistent inferences under maximum
entropy (see [58] for a review).

In fact, this symmetry is rooted in Jaynes’ original claims
about maximizing entropy. The fact that there exists an innu-
merably large class of systems which are all described
entropically, with particularities that can be fixed to produce
a description of a specific system, gives these constraints the
status of a gauge symmetry. Just like there are certain privi-
leged choices of gauge based on the computational features
they have (e.g. the Coulomb, Lorenz and Fock–Schwinger
gauges in electromagnetism), we have specified a particular
privileged choice of gauge that we may call the Bayesian
gauge,19 producing a system that engages in approximate
Bayesian inference. Moreover, there is exactly a suggestion
of the arbitrariness of the constraints in the Bayesian gauge.
Precisely, this free choice is a free choice of gauge, for inference
written down as a gauge theory. Suppose, for instance, that
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the sufficient statistics of a target probability density p are
only a mean x̂. The constraint

ð
qðxÞ log pðxÞdx ¼ 0

and
ð
xqðxÞdx ¼ x̂

both result in q = p, the former by direct solution; the latter by
recognizing that among Gibbs measures p = exp(− λx) if x̂ is
the unique sufficient statistic for p (note we are in the world
of exponential families, which is explicitly our area of interest
given the construction in [5]).

In some sense, this gauge-theoretic relationship is the
reason for approximate Bayesian inference; i.e. the reason
why it works at all. It amounts to a statement that it is suffi-
cient to learn the statistics of an outside world for that world
to no longer be surprising. More generally, it provides a defi-
nition of variational Bayesian inference in terms of constraints
on the value of a control parameter.20 In the language of
mathematical approaches to gauge theory, we can cast this
as a Bayesian gauge group, consisting of exponential func-
tions (beliefs, probabilistically speaking) where changes in
those beliefs are automorphisms of an appropriate (principal)
bundle (see proposition 1 and theorem 2 of [5]). We thus have
a kind of mechanical theory, written in gauge theoretic terms,
for all systems that look as if they engage in inference.

We can also talk about prior probabilities using this
setup. The fact that the initial parametrization of some
prior—the choice of constraints on our prior probability den-
sity—is arbitrary explains why approximate Bayesian
inference works for arbitrary choices of prior probability:
the choice of a prior is mathematically a free choice of gauge.
5.2. From gauge symmetry to dynamics
From this point, we can move from a mechanical theory to
dynamics. The coupling of a gauge field to a matter field
induces a sense of ‘direction’ in the tangent space of the
bundle, in that paths go in certain directions under gauge
forces. In particular, we can define what are termed ‘horizon-
tal’ and ‘vertical’ flows in a gauge theory.

In figure 6, we introduced the idea of a threefold structure
to gauge theories: a base space X for our space–time or back-
ground field, a principal bundle P for choices of gauge over
X, and an associated bundle E over X coupled to P, which
tells us how our matter field covaries with the choice of
gauge in P. When we generate surfaces in the associated
bundle E, the choice of section underlying that surface is
implicitly coupled to the choice of section in the principal
bundle P, such that changing that choice changes the surface
in E.

Horizontal paths through a bundle space are very special
paths called horizontal lifts. These are flat paths, along which
there is no change in the choice of gauge—and hence, no
gauge force. Gauge forces deflect horizontal paths by acceler-
ating them, curving them in vertical directions—hence,
changing the choice of gauge as a particle evolves on the
base twists its path ‘up’ or ‘down’. If this twisting exists for
every possible path, the bundle is said to be curved, which
contrasts with flat bundles that admit globally horizontal
paths. These are also called globally trivial bundles. Despite
the constraining language of all paths being curved, a
bundle with even one globally horizontal path is a special
construction; in general, fibre bundles are non-trivial (i.e.
they feature some curvature).

The object that determines whether a lift—the image of
the generalized function we called a section—evolves in a
flat or curved fashion is a generalization of a derivative,
called a connection, which we discussed at the end of the pre-
vious section. A connection induces a vector field along the
curve, or conversely, a vector field whose integral curve is
the lift (i.e. the image of the section). Under mild assump-
tions, when a connection is flat everywhere—contains no
vectors with vertical components—the bundle is trivial. A
horizontal vector field like a flat connection is also called a
foliation, and foliated vector fields have unique solutions.

We can pull the connection back along the section to get a
vector field on the base, called a pullback connection. This
determines how particles move on space–time under the
influence of gauge forces. The pullback of the connection is
what we call a ‘local gauge field’, which is the determinant
of this motion.

The integral curves of the local gauge field are isocontours
of the constraint function. In figure 6, we denoted these as cir-
cular level sets of the function J(x, y) = x2 + y2, and pulled
those circles back to the base. These circles are gauge-hori-
zontal paths: they experience no vertical curvature on the
surface J.

Feeding this into E, we can produce a section of the
associated bundle that is gauge-horizontal under an induced
connection in E. We want horizontality in the constraint space
to translate into equiprobability—gauge-horizontal paths
ought to be lifted such that they are also horizontal in E,
and thus are rings of equiprobable states. In other words,
this is a request that the rings of probability in E are parallel
to the rings pulled back to X.

The name for this is parallel transport. Parallel transport
generates horizontal lifts, in the sense that lifting a point at
the start of a path in the base and transporting it parallel to
that path generates a horizontally lifted path. As such, we
really seek to prove the following: the observation that the
shape of a probability density is constrained by the con-
straints can be made precise in the sense that probability
transports itself across the state space in parallel fashion
with respect to the constraints.

Equationally, we can derive a striking result: the solution
to maximum entropy is the parallel transport equation.
The function p which maximizes entropy is in general
exp(− λJ(x)) for some constraint function λJ(x). The condition
that a single internal function within a section (and hence a
point, in the sense of a function evaluated on an input) is
translated parallelly can be expressed as an ODE,

d pðxÞ ¼ �ldJðxÞpðxÞ,
which becomes the more familiar first-order ODE

@

@x
pðxÞ ¼ �l

@

@x
JðxÞpðxÞ, ð5:5Þ

in the standard basis of Rn. Note that (5.5) rearranges to

@

@x
log pðxÞ ¼ �l

@

@x
JðxÞ

when dividing both sides by p(x). This equation integrates to
(5.4), and was our previous equation for motion constrained
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to lie in the gradient of a potential (or, correspondingly, a con-
nection). Indeed, the solution to the parallel transport ODE
(5.5) is the exponential function

pðxÞ ¼ e�lJðxÞ:

This proves that the maximum of entropy is parallel transport
over the state space, in the same sense as parallel transport is
a variational principle for the possible motion in a state space.
These probabilistic geodesics are equiprobable rings that
comprise the desired probability density.

5.3. Splitting the flow
What is the use of discussing the splitting of the flow into
horizontal and vertical components in this gauge-theoretic
sense? The answer is that doing so provides a natural home
for results in the FEP, which clarifies the formal structure of
the Helmholtz decomposition; see equation (3.3). We
expand upon the striking result: that the splitting of the
flow of a system into vertical and horizontal components
under the CMEP is isomorphic to the Helmholtz decompo-
sition of the flow of the autonomous partition of a
particular system (see [6] for a more comprehensive technical
discussion).

Recall that the deterministic part of the flow of a particular
system (the drift component of its SDE) can be decomposed
into a solenoidal, probability-mass conserving component,
which circulates on isoprobability contours of the NESS den-
sity, and a dissipative component which counters random
fluctuations. Since horizontal flow is equiprobable, any hori-
zontal flow does not change the value of the surprisal on the
states visited. This has been identified as an exploratory com-
ponent of flow in the FEP. As such, if we are modelling
organized but itinerant systems, such as those that exhibit
life-like characteristics, we can reproduce that tendency to
explore formally, by specifying a horizontal component to
the flow in this constraint geometry. Inversely, if we consider
a very simple system, like a system with linear response—a
system that dissipates, which we expect to be highly con-
strained about its fixed point—we can place a very narrow
density around that point and build into our model the fact
that the horizontal flow should degenerate.

Conversely, with a privileged horizontal flow, we have a
corresponding idea of vertical flows. (The horizontal flow is
privileged in the sense that it corresponds to inertial paths
through state space, i.e. those which are not subject to any
extrinsic forces.) Since the vertical flows are identified with
gauge forces accelerating the paths out of the horizontal
plane, this vertical flow goes to the point of maximum
probability—i.e. the mode of p(x).

It should be noted that this construction assumes that the
constraints—and thus the mode—are fixed, but that we can
re-maximize entropy and re-fix the gauge anytime we need
to update our beliefs about the system. Indeed, the gauge-
theoretic view that we introduced here is precisely that this
is possible because p(x) is covariant on J(x). Future work
should extend this to non-stationary regimes; and has, to a lim-
ited extent, already begun [76], where the mode and
corresponding vertical flow changes direction in time, intro-
ducing a continuous interpretation of this iterated inference.
Indeed, the suggestion of a continuous view of marginal
beliefs along a path can be derived from the principle of maxi-
mum path entropy or maximum calibre [58], which we have
previously conjectured is an attractive foundation for exten-
sions of the technology of the FEP to genuine non-equilibria
[92]. We will explore the extension of the duality between
the FEP and CMEP to paths in §7, where we introduce
G-theory. However, we leave details to future work.

To recapitulate—why have we introduced the technology
of gauge theory to Bayesian mechanics? It offers an attractive
formulation of approximate Bayesian inference, and is con-
sistent with the manner in which mechanical theories are
usually written in contemporary physics; but it is mainly
useful because of what it allows us to say about self-eviden-
cing. Previous work [6] has used the CMEP to prove the
approximate Bayesian inference lemma, and tied this result
in with a gauge symmetry in CMEP. With this relationship
at hand, it is absolutely natural to show that the sort of
mode-tracking in the approximate Bayesian inference
lemma exists, in that realizations of a system under that den-
sity flow towards a mode. The splitting evinced by the gauge
symmetry allows us to define the Helmholtz decomposition
by definition of approximate Bayesian inference.

Given what we have just reviewed, the gauge-theoretic
relationship between constraints and probabilities is more
useful still, because we can understand now: (i) why surprisal
or negative log-probability is the canonical choice of func-
tional, via parallel transport, (ii) why parallel transport
makes sense, via gauge covariance identities and (iii) why
there appears to be a force—a sort of metaphorical life-
force, perhaps, and in fact, a gauge force—driving the
mode-matching that underlies the control of probabilistic
(Bayesian) beliefs under the FEP.
5.4. The duality of the FEP and the CMEP
Despite not being about non-equilibrium systems explicitly,21

the CMEP formulation allows us to derive insights from the
technology of the FEP. We now review some consequences
of the duality.

Previously, we said that duals are precise opposites: they
give two opposing perspectives on a situation; here, one
faced inwardly, from the heat bath towards the self-organiz-
ing particle, and one faced outwardly. The key is this: dual
pairs tell the same story from opposing points of view.
Thus, particles that minimize their free energy given some
generative model can be understood equivalently as maxi-
mizing their entropy under a particular constraint. As such,
we have a duality of action functionals in each description.
This is as simple as negating the free energy, converting the
log-probability to a constraint, and then maximizing the
result instead of minimizing it, as discussed in [6]; more gen-
erally, it can be obtained by Legendre–Fenchel duality, and
our construction (subtracting an entropy from an internal
energy to get a free energy) is loosely equivalent to that dua-
lity in this case. A further duality is at hand—we can
interchange internal and external states owing to the sym-
metry of the Markov blanket, and introduce maximizing
entropy under a constraint as the dual statement about a sys-
tem’s assumed identity (i.e. expressing the particular system
in terms of constraints over the flow of its states). These two
adjunctions, relating to the action functional and to the shape
of the flow in state space, mean that we can write down
mechanical theories for particular systems under some onto-
logical potential or constraint in two dual ways: as a NESS
density, or as the section of a principal bundle. Maximizing
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self-entropy—given some specific constraints—is equivalent to
(in the very precise sense of being dual to) minimizing vari-
ational free energy given some generative model. Constraints
subsume system-ness under the CMEP; and geometrically,
they are dual to the NESS potential, which plays the same
core role. In turn, constraints serve as a potential for the dif-
fusion equation given by a gradient ascent on entropy; just as
the NESS density serves as a potential for the flow given by
descent on free energy. Finally, we have seen that constraints
shape the dynamics of an inferential process in the same way
as a gauge field does when it interacts with a matter field (i.e.
allowing for redundancy and some degrees of freedom with
respect to which the action remains invariant or stationary).

We thus have discussed a mathematically more familiar
formulation of the FEP, re-deriving FEP-theoretic results
under a complementary principle of stationary action
(i.e. the CMEP). A direct consequence of the above is that
self-organization, as described by the FEP, occurs because of
entropic dissipation, not despite it. The idea of maximizing
entropy allows us to say that life is actually statistically
favoured as a vehicle for the second law. In other words,
despite the apparent paradox of self-organization in the
face of entropy, organization is encouraged by the universe
because order in one place means greater disorder in another
(for applications to the FEP, see the argument in [4]).

These constraints can be formulated in terms of a Markov
blanket in the state space of a particular system, such that they
are equivalent to a generative model; but there are distinct
benefits to the formulation as constraints over what one
might call the existential variables [44] of a system. At one
very zoomed out level, having a particular partition leads
to the constraint that internal states model external states;
so, having a blanket implies certain constraints, and conver-
sely, we can constrain internal states to model external
states. However, this can be translated into an equivalent con-
struction that emphasizes the way that the internal states of a
particular system must look, i.e. the way they are constrained
to be optimal parameters of some belief, which we have
referred to as an ontological potential. As such, the CMEP
formulation allows us to avoid (at least some of) the philoso-
phical concerns that one might have with Markov blankets in
state space (e.g. [102]), at the expense of being less computa-
tionally tractable: specifying a full set of existential variables
for a system is in general a difficult problem.

The duality of the FEP and the CMEP also sheds light on
how to interpret the two components of the flow of auton-
omous (active and internal) states of a system that arise
when we assume that the mechanics of a system has a
NESS solution. We have seen that, given a NESS density,
the self-evidencing dynamics of a particular system has two
components: a dissipative, curl-free component and a sole-
noidal, gradient-free component, both of which together
determine the inferential dynamics of a system. From the per-
spective of the FEP, this dissipative component can be
thought of as a ‘fast’ flow towards the synchronization mani-
fold [70] (i.e. one that counters the fast random fluctuations);
equivalently, from the dual perspective of the CMEP, this can
be cast as a vertical lift into a probability space [6]; see also §4.
The orthogonal, solenoidal component of the autonomous
flow can be seen as a slow flow on the synchronization
manifold.

From an information-theoretic perspective, one can also
think of the solenoidal flow as the prediction component of
inference, and the dissipative flow as the update term,
which corrects the prediction given sensory information
[70]. The solenoidal component of the flow is the estimation
part of the inference: it circulates along what one can think
of equivalently as the isocontours of a NESS potential, or
the level sets of a maximum entropy probability density. In
the gauge-theoretic formulation, a horizontal flow builds a
piece of the probability density along some contour line. It
is these horizontal flows that correspond to the paths of
least action that underwrite the FEP, in the absence of
random fluctuations. Maximum entropy inference corre-
sponds to this horizontal movement on a statistical
manifold, which is often cast as a kind of inference in the
FEP literature, in that it circles around the contours of the sol-
ution, yielding a whole posterior over state space. But this is
not quite inference in the sense of the updating of probabil-
ities. The orthogonal, dissipative flow can be read as the
component of the flow that ‘corrects’ the solenoidal flow,
given perturbations induced by sensory states. It thus carries
information about external states that is vicariously encoded
by sensory states. Dissipative flow is more straightforwardly
associated with inference, and is closely associated with
updating one’s predictions based on sensory data. It ulti-
mately underwrites the existence of the synchronization
manifold between expected internal states (or internal
modes) and expected external states (or external modes),
and its existence is really the core of the FEP. Indeed, the sole-
noidal component is not explicitly needed to get Bayesian
mechanics—but it can be specified to get inferential
dynamics from particular systems (see [5,6]).
6. The philosophy of Bayesian mechanics
The aim of this paper has been to formally introduce the field
of Bayesian mechanics as well as its core results and technol-
ogies. In this section, we leverage the previous discussion to
clarify some of its core philosophical commitments. We pro-
vide the following caveat: the philosophy of Bayesian
mechanics is obviously a work in progress; we just sketch
some crucial points here.

6.1. Clarifying the epistemic status of the free energy
principle

We hope that our formal treatment of Bayesian mechanics
clarifies issues about what kind of thing the FEP is, and
what its epistemological status might be—as well as its
relation to the other main characters of the Bayesian mechan-
ical story (especially the CMEP). The FEP has sometimes been
presented using the word ‘theory’, which might imply that is
an empirical theory—i.e. that it is the kind of thing that is sus-
ceptible to direct confirmation or disconfirmation. Over the
nearly two decades since its introduction into the literature
as a formal object of discussion—where it was presented
initially as a theory (e.g. a ‘theory of cortical function’ or a ‘uni-
fied brain theory’ in [72,103])—a whole body of work has
emerged around it. The FEP and FEP-adjacent work have
also been discussed less as a theory, andmore as a broadmod-
elling framework (the ‘active inference framework’; e.g. [104]),
or as modelling heuristic (a kind of ‘trick’, in a complimentary
sense akin to the ‘variational autoencoder trick’ in machine
learning [102]). The FEP has sometimes been presented as a
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new branch of physics (a ‘particular physics’ [1]; or a ‘physics
of sentient systems’ [80]), or a self-correcting mathematical
approach to typologizing of kinds of systems that exist phys-
ically (a ‘formal ontology’ [105,106]). All these perspectives
can be reconciled and made sense of. Recently, [44] usefully
used the resources of the philosophy of scientific modelling
to draw attention to the fact that the FEP itself is what we
called in §2 a mathematical theory: a formal structure without
specific empirical content (i.e. that has no specific empirical
application). Our contribution to this discussion has been to
draw attention to the role of different kinds of formal struc-
tures within Bayesian mechanics.

To sum up: principles like the FEP, the CMEP, Noether’s
theorem, and the principle of stationary action are mathemat-
ical structures that we can use to develop mechanical theories
(which are also mathematical structures) that model the
dynamics of various classes of physical systems (which are
also mathematical structures). That is, we use them to
derive the mechanics of a system (a set of equations of
motion); which, in turn, are used to derive or explain
dynamics. A principle is thus a piece of mathematical reason-
ing, which can be developed into a method; that is, it can
applied methodically—and more or less fruitfully—to
specific situations. Scientists use these principles to provide
an interpretation of these mechanical theories. If mechanics
explain what a system is doing, in terms of systems of
equations of movement, principles explain why. From there,
scientists leverage mechanical theories for specific appli-
cations. In most practical applications (e.g. in experimental
settings), they are used to make sense of a specific set of
empirical phenomena (in particular, to explain empirically
what we have called their dynamics). And when so applied,
mechanical theories become empirical theories in the ordinary
sense: specific aspects of the formalism (e.g. the parameters
and updates of some model) are systematically related to
some target empirical phenomena of interest. So, mechanical
theories can be subjected to experimental verification by
giving the components specific empirical interpretation.
Real experimental verification of theories, in turn, is more
about evaluating the evidence that some dataset provides
for some models than it is about falsifying any specific
model per se. Moreover, the fact that the mechanical theories
and principles of physics can be used to say something inter-
esting about real physical systems at all—indeed, the striking
empirical fact that all physical systems appear to conform to
the mechanical theories derived from these principles (e.g.
[81])—is distinct from the mathematical ‘truth’ (i.e. consist-
ency) of these principles.
6.2. Élan vital and the free energy principle
The idea of an ontological potential endows even simple
physical systems, such as rocks, with a kind of weak coher-
ence and ‘monitoring’ of internal states (see the typology of
kinds of particles in [66]). Hence, the FEP itself has nothing
instructive to say of the demarcations defining life or con-
sciousness per se. We have spoken at length about how the
viewpoint of constrained entropy makes it apparent how
general the FEP is. Namely, the FEP covers a broad class of
objects as cases of particular systems, including adaptive
complex systems like human beings, simpler but still complex
systems like morphogenetic structures and Turing patterns,
and even utterly simple, inert structures at equilibrium, like
stones on some permissible timescale. Objects that have no
structure or no environment, either of which fail the FEP
for obvious reasons, exist at one extreme—but to make any
conclusive statements about the distinctions between living
and non-living, or conscious and non-conscious, systems
should be regarded as impossible in the framework suggested
here, and for principled reasons.

On the other hand, the well-definiteness of adaptive sys-
tems that exhibit control but that we would not ordinarily
describe as ‘cognitive’ has been discussed quite recently
under the rubric of ‘scale-free cognition’ in [89,107], where
it is argued that anything that is an organized system gener-
ated via emergent dynamics does indeed satisfy some core
properties of cognition. In other words, patterns can be
taken as performing inference ‘over themselves’. The conse-
quence that we cannot construct a useful demarcation
between bona fide cognition and dynamics appearing merely
‘as if’ they are cognitive, but which actually reduce to
‘mere’ physics, encapsulates the principle of free energy mini-
mization in the context of cognition in unconventional
substrates. These normative statements that everything
which could be modelled as performing some kind of infer-
ence can indeed be understood as performing an elemental
sort of inference (as a species of generalized synchrony),
without the metaphysical baggage of statements about
‘mind’ and ‘cognition’, are restorative.

On this basis, we can ask whether the FEP really loses
some explanatory power as a result of being vacuously true
for all sorts of particles. Having originated in the study of
the brain, it might seem dissatisfying that the FEP should
also extend to inert things like stones, and that its foundations
have nothing unique to say about the brain (or the mind, or
living systems, for that matter). In our view, the fact that the
FEP does not necessarily have anything special to say about
cognition is something of a boon—it should be the case that
cognition is like a more ‘advanced’ or complicated version of
other systems, and possesses no special un-physical content.
Indeed, the commitment to a principled distinction between
cognitive and non-cognitive systems, or living and non-
living ones, commits to a sort of élan vital, wherein the sub-
stance and laws of learning, perception, and action should
not be grounded in the same laws of physics as a stone, as
though they provide a different, more implacable sort of
organization or coherence of states [108]. In fact, the opposite
has been argued in this paper: that such a theory should be
reinterpreted in thermodynamical terms, just as much of the
rest of soft matter and biological physics [17,106,109,110]. As
such, we reject these implicitly dualistic views. As has been
suggested many times in these results, the vacuousness of
the FEP is really a consequence of its generality, and that
allows us to look at any system and ask what the FEP says
about how we can understand its dynamics. This moves us
towards a genuine teleology of self-organizing systems [111],
via a mechanistic understanding of how that self-organization
rests on—and is captured by—Bayesian beliefs.
6.3. On maps and territories
This notion of a ‘being a model’ is key to Bayesian mechanics
and, especially, to the FEP (which could have been called the
‘model evidence principle’). Heuristically, the FEP says that if
a particular system exists as a cohesive locus of states over
time, then it must entail or instantiate a model of its
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environment. Some have raised the concern that the FEP con-
flates the metaphorical ‘map’ and ‘territory’ (see [112] for a
discussion). The question is: Is the FEP itself a probabilistic
model (or metaphorical ‘map’) of self-organizing systems;
or does it entail that self-organizing systems themselves are,
carry, or entail a probabilistic model? In other words, are
the models in question being deployed by scientists, or by
self-organizing systems?

This worry can be addressed simply by noting that there
are two ways in which we say that particular systems can be
construed as statistical models under the FEP, which pertain
to the two core probability density functions that figure in
the formulation: these are the generative model and the vari-
ational density [7,62,112]. In a first sense, for a particular
system ‘to be a model’ is shorthand: it means that the system
entails or instantiates the statistical relations that are harnessed
in the generativemodel. Aswehave seen, the generativemodel
is really just the potential function or Lagrangian (if over
paths) of a particular system. It is a mathematical construct
that can receive a specific empirical interpretation, as a rep-
resentation of the full, joint dynamics of a particular system:
i.e. a mechanical theory coupling autonomous states or paths
to external states or paths. Thus, on one first reading, that a par-
ticular system is amodel of its environment means that we can
think of the system itself and its embedding environment as
entailing the relationships that figure in a generative model.
Since they are cast as instantiating these relationships, we can
say that the system ‘is’ the generative model, being careful to
note that this is shorthand, and to not conflate themetaphorical
‘map’ (our scientific model) and the ‘territory’ (the target
system)—at least at this level of analysis.

But there is also a second sense of ‘being amodel’ at play in
Bayesian mechanics, perhaps the most important of the two,
which licenses a stronger representationalist interpretation. In
some sense, the FEP is a ‘map’ (a scientific model, indeed, a
probabilistic model) of that particular part of the ‘territory’
that behaves ‘as if it were a map’ [62,112]. Rather than being
a case of reification, as some have suggested (e.g. [113]), one
might instead say that the FEP deploys two nested levels of
modelling: that of the scientist or observer, and that of the
self-organizing system being observed. As we have said,
given a particular partition, we can interpret the internal
states or paths of a particular system as encoding the par-
ameters of a (variational) density over external states. Thus,
under the FEP, we can model the states of a system as if they
were encoding beliefs (q) about some things to which it is
coupled (p). As Alex Kiefer once put it (2021, personal com-
munication), according the FEP, the best scientific model of
self-organizing systems is one that models them as statistical
models of their embedding environment. In this sense, the FEP
starts from a radical take on the nouvelle AI conception that a
brain–body–environment system is its own best model.
6.4. Blanket-based epistemology
Finally, in light of this, it should be noted that there is an
implicit epistemology inherent in Bayesian mechanics, which
is evinced by both the FEP and the CMEP [112]. The FEP is
a metrological (i.e. measurement-theoretic) statement at its
core: it entails that the existence of self-organizing systems
in our physical universe is (or can be modelled as) a kind
of measurement [1]. And at its core, measurement is a kind
of inference. The FEP can be stated heuristically as the
claim that to exist is to continuously generate evidence for
one’s existence—what we have called self-evidencing [79].
Continued existence in the physical universe provides sys-
tems with sensory evidence of their own existence; and
under the FEP, self-organization occurs because systems
minimize free energy (i.e. minimize the discrepancy between
expected data, given a model of how those data were
generated, and sensed data).

The FEP further implies that, ultimately, there is no way to
meaningfully distinguish between saying that the dynamics of
a system actually engage in or instantiate approximate Baye-
sian inference, and saying that they merely ‘look as if’ they
do so—without, that is, breaking the blanket itself. This is
true both from the point of view of scientists measuring self-
organizing systems and from the point of view of self-organiz-
ation itself—and it is further illuminated by the duality
between the FEP and the CMEP. The key point is thatmeasure-
ment is not a given: after all, a measurement is an inference
based on data and prior beliefs. This speaks to the observa-
tional foundations of physics [114,115]. Without this ability
to measure and infer, arguably, therewould simply be no phy-
sics. The FEP in some sense captures our epistemic
predicament as needing to make inferences from data to
learn about the world: it mandates that we can never go
‘beyond the blanket’. As scientists attempting to make sense
of some phenomena, we can never escape having to merely
infer the states of affairs behind the blanket (i.e. the internal
states or paths of phenomena, given the different kinds of
data at hand). In FEP-theoretic terms, from the perspective
of our own particular partitions as scientists, we only have
access to our sensory paths, i.e. our measurements, which
we use to make model-based inferences about what generated
our data. And (at least arguably), saying anything about what
lies beyond the blanket that would in some sense escape our
vicarious relation to it would be more akin to metaphysics
than it would be to scientific inquiry.

Crucially, this kind of blanket-based epistemicminimalism
is fully consistent with (indeed, dual to) the implications of
Jaynes’ maximum entropy principle, which is precisely
about modelling physical systems from a point of view of
maximal ignorance. The maximum entropy principle is used
to fashion a probability density to explain some data based
on as few assumptions as possible. The maximum entropy
principle says that given a set of distributions that might
explain some data, the one with the most entropy (i.e. the
most uninformative one) is the ‘true’ distribution. Likewise
and dually, and more formally, the FEP says that given a set
of sensory states or paths (i.e. given some data), the real path
of autonomous states is the one expected have the least free
energy (i.e. the least surprising one). The philosophical duality
also expresses itself practically. Using the technology of the
CMEP, we can create mathematical models of a particular
system,wherewe occupy the perspective of the environmental
system or external observer that is embedding the particular
system. Dually, using the FEP, we can also model how a par-
ticular system measures itself and its environment from its
own perspective [112]. Thus, even philosophically, the FEP
and the CMEP are really at their core two sides of the same
coin. Thus, we can read the FEP as a physics of beliefs, in the
sense that it is a principle allowing us to formulate mechanical
theories for the image of a particular system in the space of
beliefs; and dually, we can read the CMEP as a physics by
beliefs, in the sense that it is a principle specifying how to
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use the formal structure of probabilistic belief updating to
model particular systems.
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7. Concluding remarks and future directions:
towards G-theory

We have presented the current state of the art in Bayesian
mechanics. After some preliminary discussion, we reviewed
core results of the FEP literature, examining a three-part
typology of the kinds of systems to which the FEP has been
applied (over paths, over states with a NESS potential, and
over states at a stationary NESS). We then reviewed the dua-
lity of the FEP and the CMEP. We saw that one can construct
a gauge-theoretic formulation of the CMEP, which explains
why approximate Bayesian inference works at all, and why
everything looks as if it was becoming a model of its embed-
ding environment on average and over time (and why this is
like dissipating into it, given some phenotype-congruent con-
straints on the mechanics of that process).

We now briefly discuss one core direction of research in
Bayesian mechanics, focusing on the construction of a math-
ematical theory that will extend the duality between the FEP
and the CMEP, and beyond. We started with a path-based
formulation of the FEP, and we noted that in order to say
more meaningful things about the mechanics of such sys-
tems, we could formulate things in terms of probability
density dynamics over states. We have seen that the states-
wise formulation of FEP is dual to the CMEP, which is formu-
lated in terms of states. This body of work—in tandem with
other work in the field (e.g. [36,116])—increasingly suggests
that existing approaches to the physics of intelligence and
adaptivity fit together in a nontrivial way, as if they were
parts of an as yet undiscovered whole. Although currently
in its early stages, and still inchoate, one can begin to see
the shape of a general mechanics for complex self-organizing
systems emerge from this convergence.

G-theory is the name we have given to a larger theory of
complex adaptive systems that we do not yet fully under-
stand, but whose existence is strongly suggested by the
duality between the FEP and the CMEP explored here. The
name G-theory is intended as something like an homage to
M-theory in theoretical physics. The existence of M-theory
was first conjectured in the 1990s as a unifying treatment of
known string theories [117]; at the time, it was known that
specific versions of string theory were dual to each other,
and the idea was that there must exist an underlying theory
of which all known string theories were aspects or facets.
Like M-theory, the reader should note that the G in
G-theory does not mean anything specific. If pressed, the
authors might suggest ‘gauge’, or maybe ‘generalized’, or
point out that EFE is often denoted G.

One duality that suggests the existence of G-theory is the
equivalence of the density dynamics formulation of the FEP
and the CMEP, which we discussed at length in this paper.
Another, which we have begun to investigate of late [65], con-
cerns the equivalence between the paths-based formulation of
the FEP and maximum calibre, an extension of the formalism
of CMEP to the entropies of paths or trajectories. The entropy
of an ensemble of paths is known as ‘calibre’ [18]; and the for-
mulation of maximum path entropy is known as maximum
calibre.

Here, our discussion comes full circle. We started from a
discussion of paths of stationary action, then moved from
there to density dynamics formulations (i.e. probability den-
sities over states) to see what could be said with some
addition assumptions in play. We can now return to paths,
but from the perspective of the maximization of entropy. In
ongoing and future work, we aim to construct relationships
of the following form, further dualizing the Bayesian-mech-
anical construction:
The ‘adjunction’ between constrained self-entropy and
free energy on beliefs discussed here and in [6] is the
left-most pair of maps on the diagram. The map on the
top, generalizing maximum entropy to maximum calibre, has
been discussed in [33,58]; and the relationship between free
energy and EFE has been worked out previously in several
places (e.g. [66,84,118]), as we discussed in §3. One aspect
of G-theory is represented in the above diagram. A first case of
G-theory would consist of a map on the right,

DKL½qðx, tÞkpðx, tÞ� þ log pðx, tÞ �!�
ð
pðgÞ log pðgÞdg

� E½s�1ðĥðtÞÞ� þ m̂ðtÞ,
alongwith its adjoint, constructed such that thediagramcommu-
tes in the direction of the dotted line (a map whose existence is
sketched out in [92] in particular). This will allow us to further
leverage the equivalence between the FEP and the constrained
minimization of entropy. While the implications of this have yet
to be fully worked out, these technologies will allow us to write
down mechanical theories for the kinds of systems that are
more easily expressible in terms of calibre as opposed to surprisal
and its variational free energy bound. This may turn out to be a
non-negligible class of systems, since many biological systems
seem to appear to be non-stationary, to have moving attractors,
to have chaotic trajectories [65], or to have no steady state density,
at least over some timescales. Indeed, as has been remarked [6],
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maximum calibre is perhaps a more natural setting for dealing
formally with these kinds of systems.

In closing, we hope to have provided a useful introduc-
tion to Bayesian mechanics, and clarified the core notions
and constructs that it involves. We have seen that Bayesian
mechanics comprises tools and technologies that allow us
to leverage a principle (i.e. the FEP or the CMEP) to write
down mechanical theories for stochastic systems that look
as if they are estimating posterior probability distributions
over the causes of their sensory states. We have seen that
Bayesian mechanics is specialized for systems with a particu-
lar partition, which allow the particular system to encode the
parameters of probabilistic beliefs about the quantities that
characterize the system as ‘the kind of system that it is’. Baye-
sian mechanics thereby provides a formal language to model
the constraints, forces, fields, manifolds and potentials that
determine how the image of a physical, particular system
moves in a statistical manifold. We reviewed the main FEP-
theoretic results in the literature, using a typology of the
kinds of systems to which it applies. We also reviewed core
notions from the philosophy of scientific modelling as it
applies to physics, as well are core constructs from mechanics
and gauge theory. We then discussed the duality of the FEP
and the CMEP, which lie at the heart of Bayesian mechanics,
and examined the deep implications of this duality for
Bayesian mechanics and physics more broadly. We are enthu-
siastic about recent and future developments of Bayesian
mechanics. Mathematical formulations for Bayesian
mechanics are available—much remains to be done.
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Endnotes
1Wemean ‘typical’ in a twofold statistical sense of an eventwhich is typi-
cal of some probability density, i.e. both (i) in the sense of a state for
which some sample is unsurprising and (ii) in the sense of a quantity
which is characteristic of the ensemble limit of that system (i.e. a state
which the system is likely to evolve to asymptotically). This is known
to concentrate paths-based formalisms into state-based formalisms. See
[32] and especially [33] for important remarks on this.
2In the FEP literature, the word ‘system’ usually refers to the set of
coupled stochastic differential equations that cover both a particle
(internal and blanket states or paths) and its embedding external
environment (external states or paths). In other words, the system of
concern in the FEP formulation is not only the particle or self-organiz-
ing system, but rather the dynamics of coupled particle–environment
system. (This is sometimes discussed in terms of an extended brain–
body–environment system [37], or an agent–environment loop [6].)
This is why the word ‘particle’ was introduced in this literature: to
ensure there is no ambiguity about what was meant by a ‘system’.
We note that there are some inconsistencies in the literature, owing
to the fact that these terms are not used homogeneously across physics.
3We are using thewords ‘dual’, ‘dualization’ and ‘dually’ in a semi-tech-
nical sense; see §5. Briefly, dual objects are precise opposites of one
another. The duality of two maps or objects, which we call an adjoint
pair, means that they share intrinsic features, but exhibit relationships
to other objects in opposite directions. The reader should note that the
term adjoint pair is most often seen in category theory, but that we do
not explicitly consider category-theoretic notions here.
4To avoid ambiguity, we will reserve the term ‘interpretation’ for the
way that a principle makes sense of why a mechanical theory works
the way that it does; and reserve the term ‘empirical application’ to
refer to the systematic association of some aspects of a mathematical
theory or structure to aspects of the empirical world. See [44,45] for a
closely related discussion.
5Contemporary theoretical physics is premised on the use of optimiz-
ation principles to determine mechanical theories. The use of
optimization principles in the construction of mechanical theories to
derive the dynamics of a physical system should not be misinterpreted
as being tantamount to claiming that physical systems actually calculate
their extrema. Principles of symmetry, which are known to underwrite
all physics, are something of a scaffolding for the use extremization—for
instance, on a path of least action, the momentum and energy of free
particles is conserved, a time translation symmetry given by Noether’s
theorem. Optimization can be seen as a consequence of the desire for
symmetries in our picture of the material world. Along the same
lines, instead of assuming (indeed, falsely) that physical systems
engage in explicit calculation of their dynamics, we only require that
there exists a Lagrangian or Lyapunov function for those dynamics: a
quantity that varies systematically with those dynamics. Empirically,
we know that generic physical systems conform to at least one such
symmetry or conservation principle. Indeed, this conformance is a strik-
ing empirical fact about the universe in which we live, and not merely a
mathematical artefact or modelling strategy.
6Recall, however, that a system is in general unaware of its use of
energy; this is a fictive description which makes the stationary
action principle more intuitive.
7Recall the physical basis for maximum entropy, i.e. that physical sys-
tems tend towards the macrostate with the largest number of
microstates, given some constraints (or parameters for the assign-
ment of microstates to macrostates, via their probabilities) [18, §3].
It can be mathematically proven that this ‘spreading’ behaviour is
what leads to diffusion [56].
8These first few remarks on fluctuations and their variance highlight
how the FEP is formulated implicitly in a multi-scale fashion, which
has motivated a growing body of work on multi-scale dynamics
under the FEP [59–61]. Indeed, already at this early stage of presen-
tation, the formulation presented here appeals to a separation of
timescales: we distinguish between a faster timescale of states or
paths that are effectively treated as random fluctuations, and a
slower timescale of states or paths that are treated as states or paths
per se. This is expanded upon and used to effect in [1].
9A less traditional but equivalent partition into three parts is also
possible (see [76]).
10We use the term ‘Markov blanket’ to denote boundary states gener-
ally. Most of the time, the relevant boundary states either (i) entail a
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strict Markov blanket, or else (ii) entail an approximate one. The SCC
tells us that we are bound to have a (weak) Markov blanket if the
system considered is large enough. We acknowledge that, in some
of the more interesting cases, the boundary states are indeed not
Markov blankets, strictly speaking. But we have dedicated terminol-
ogy for those cases: these are, instead, adiabatic or weak blankets, as
the case may be (see [64]).
11As we will go on to describe, this serves as an intuition for the com-
monality of Markov blankets in high-dimensional systems.
12The Markov blanket condition can also be weakened to a notion
which departs from strict conditional independence [64].
13The reader should note that there is a crucial difference between the
stationary point of a functional of probability densities (which is also
a probability density) and the stationary point of the dynamical
system per se, which is a point in the state space. When we say that
a path is a stationary point of a free energy functional, we mean
that it is the least surprising path the system can take through state
space.
14It is important to note that one can take a path of stationary action
over a system that is not stationary, by moving to paths as opposed to
states.
15It has been claimed that the FEP requires assumptions of stationarity
and/or steady state, or related assumptions such as ergodicity (e.g.
[77,78]). Based on this claim, it has been suggested [77] suggested that
the FEP cannot be used to model path-dependent dynamics. This is proble-
matic on two counts. First, as we have seen, the FEP in its most general
form does not require that we make these assumptions. Second, when
we do make the (admittedly more restrictive) assumption that the
system has a NESS density (i.e. that its mechanics have a steady state sol-
ution), we can leverage the Helmholtz decomposition (examined in the
next section) to split the deterministic part of the flow (or drift) into a
path-dependent, conservative flow and a path-independent, dissipative
flow (see [1]).
16Note that this map induces what is termed a synchronization manifold,
which is where the synchronized trajectories are collected (e.g. [90]).
17For clarity, note that this section is meant to provide a review of
existing work, rather than presenting new results.
18Note in the above that we have absorbed the −1 resulting
from evaluating −(∂/∂p(x))log p(x) into the Lagrange multiplier λ.
The normalization constant Z has also been absorbed into λ, as a
matter of convention [58]. Hence, all p’s indicated here are
probabilities.
19The authors thank James Glazebrook for suggesting this name.
20Here, a control parameter is a variable (possibly exogenous to the
system in question) which plays a critical role in setting the dynamics
of that system—for instance, blanket states from the perspective of
internal (respectively external) states.
21Although, note that any directed-ness to the horizontal flow breaks
detailed balance, allowing us to extend the CMEP to NESS densities.
Also, note that the information-theoretic notion of inferring a station-
ary probability density is valid even outside equilibrium, whether the
system is maximizing physical entropy or not.
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