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Abstract 
Developing feature selection algorithms that move beyond a pure correlational to a more causal 

analysis of observational data is an important problem in the sciences. Several algorithms attempt 

to do so by discovering the Markov blanket of a target, but they all contain a forward selection 

step which variables must pass in order to be included in the conditioning set. As a result, these 

algorithms may not consider all possible conditional multivariate combinations. We improve on 

this limitation by proposing a backward elimination method that uses a kernel-based conditional 

dependence measure to identify the Markov blanket in a fully multivariate fashion. The algorithm 

is easy to implement and compares favorably to other methods on synthetic and real datasets. 
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1 Introduction  

Causality refers to a relation between a variable and another variable such that the latter variable 

is understood to be a consequence of the former. Three groups of methods have been described in 

the literature to infer causality from observational data. The most popular group includes 

conditional independence test methods such as PC (Spirtes et al., 2000) and FCI (Spirtes, 2001) 

that attempt to construct a graph representing all causal relationships in a dataset. The second 

group takes a more local approach by identifying the Markov blanket, or those variables that are 

conditionally independent on a target given the remaining variables; examples include IAMB 

(Tsamardinos & Aliferis, 2003), HITON-MB (Aliferis et al., 2003), and MMMB (Tsamardinos et 

al., 2006). The final group identifies pair-wise causal relationships by comparing the complexities 

of a forward and backward model such as LiNGAM (Shimizu et al., 2006) and additive noise 

models (Hoyer et al., 2008). However, to remain tractable, all of these methods do not consider 

all possible multivariate combinations. As a result, they may fail to identify subtle dependencies 

between variables.  

A number of kernel-based methods have recently been developed that perform multivariate 

conditional dependence measurements in reproducing kernel Hilbert space (RKHS; Fukumizu et 

al., 2009; Zhang et al., 2011). In this paper, we take advantage of these methods by incorporating 

either one of two kernel-based conditional dependence measures (K-CDMs; Fukumizu et al., 

2009; Zhang et al., 2011) in a backward elimination algorithm to identify the Markov blanket in a 

fully multivariate fashion. The rest of this paper is structured as follows. We first provide 

background on Bayesian networks in Section 2 and then discuss related work in Section 3. In 

Section 4, we describe the new algorithm that identifies the Markov blanket of a target by 

iteratively eliminating variables that minimize K-CDM. We finally provide results comparing the 

proposed algorithm with other feature ranking and subset selection methods in Section 5. Section 

6 provides a brief conclusion. 
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2 Background 

We denote random variables in upper case italics and sets of random variables in upper case bold 

italics. A Bayesian network is a probabilistic model that combines a directed acyclic graph 

(DAG) with parameters to represent a joint probability distribution over a set of random 

variables. Specifically, a DAG contains a node for every variable in the dataset, and an edge 

between a pair of nodes R-S is absent if R is independent of S given T for some T, and an edge R-

S is present if R is dependent on S given T for all T (Friedman & Koller, 2009). The absence of 

edges in a DAG can be determined by performing tests of conditional independence. Two 

variables   and   are conditionally independent given a third variable   if and only if the value of 

  provides no information about the value of   and vice versa given the value of  . In 

mathematical notation,      .  

Let Y denote the target variable and X denote all other variables excluding Y in a dataset. The 

Markov blanket of  , denoted by      , is a subset of   that includes Y’s parent, child and 

spousal nodes.       can be identified by showing that a target node is conditionally 

independent of all other nodes given its parents, children and spouses: 

  {       }                  (1) 

In this paper, we assess conditional dependence between arbitrary distributions within RKHSs. 

Specifically, we map   and   into RKHSs   and   respectively using two positive semidefinite 

kernels           and          . There then exists a conditional cross-covariance 

operator            for any function     such that: 

〈        〉    [      [      ]]  (2) 

which represents the residual errors of predicting      with   (Fukumizu et al., 2009).  

Let    be a subset of  . Then, the conditional cross-covariance operator exhibits the following 

property:              , where the order is determined by the trace operator, and the equality 

holds when    includes       so that       .  

Empirically, we can compute the kernel matrices    
 and    from a sample size of   drawn i.i.d. 

from the distribution       . The trace of the empirical conditional cross-covariance operator is 

then defined by:  

      (      
      

  )  (3) 

where    
 (   

 

 
    

 )   
(   

 

 
    

 ) with   representing sample size,    an     

identity matrix, and    a vector of ones. The regularization term     is added for the inversion. 

A similar measure proposed by Zhang et al. (2011; Equation 12) is based on eigenvalue 

decompositions of centralized kernel matrices: 

      (   
     

)  
 (4) 

where    
  (   

    )
  

. Unlike   , this new measure was developed so that the authors 

could create a test of conditional independence using a statistic shown in their Equation 13 whose 

null distribution is approximated by a gamma distribution. Note that both   and    can each be 

multivariate with either of the two K-CDMs. Moreover, both K-CDMs do not make assumptions 

about the data distributions of   and    or their functional relationship. 



MARKOV BLANKET RANKING USING KERNEL-BASED CONDITIONAL DEPENDENCE MEASURES 

 3 

3 Related Work 

The Hilbert Schmidt Independence Criterion (HSIC; Gretton et al., 2005) is a sensitive measure 

of dependence between two kernels, where larger values denote a greater degree of dependence. 

Song et al. (2007) developed an algorithm called BAHSIC that uses HSIC for feature selection by 

embedding the target in the first kernel and the remaining variables in the second kernel; the 

algorithm then uses backward elimination to remove variables from the second kernel that 

maximize HSIC. In practice, the algorithm can detect subtle dependencies and help increase 

classification accuracy to a greater extent than many other feature selection algorithms.  

HSIC unfortunately can have difficulty in detecting all of the variables in      , since some of 

these variables may only show a weak association with the target. Measures of conditional 

dependence may instead be more useful in this regard. Nevertheless, correctly identifying the 

subset of variables to condition on can be difficult as the number of possible subsets grows 

exponentially with the number of variables (Statnikov et al., 2013). Markov blanket discovery 

algorithms including IAMB, HITON-MB, and MMMB thus incorporate a forward selection 

phase, where variables are required to display an association to the target before being included in 

the conditioning set. For example, the HITON-MB algorithm relies on a univariate association 

between the tested variable   and the target  . On the other hand, the IAMB and MMMB 

algorithms test the association between   and   relative to a growing conditioning set of 

previously selected variables. In other words, both IAMB and MMMB initially rely on a 

univariate relationship with   but gradually become more multivariate. These forward selection 

strategies can be suboptimal because some variables may reveal a relationship with the target only 

when all the other variables in       are included in the conditioning set.  

Several other limitations have been described in the literature. First, HITON-MB and MMMB 

may identify incorrect variables in the second step, since there are certain conditions under which 

variables not in       can enter       as described in Peña et al. (2006). Moreover, both these 

algorithms rely on HITON-PC and MMPC which also have shortcomings. The PC algorithms 

assume that if   is not a member of the set of variables which are parents and children of Y, 

denoted by      , then       for some        , so any node not in       is removed 

which is not always true. Second, Lou and Obradovic (2010) highlight that conditional 

independence testing may become unreliable with small sample sizes. As a result, they have 

instead promoted algorithms that rely on sensitive dependence measurements such as HSIC as 

opposed to tests in order to discover      . However, in this paper, we will show that a new 

algorithm using Equation 3 or 4 can in fact perform very well by similarly avoiding statistical 

testing.  

The main ideas used in this paper are motivated by the work of Fukumizu et al. (2009), in which 

the authors introduced a method of kernel dimension reduction using Equation 3. However, their 

method cannot be directly used to find      , since it finds orthogonal projections of   with 

respect to kernel-induced feature space. In this paper, we select variables with respect to input 

space to make the kernel-based conditional dimensionality reduction method more applicable to 

      discovery. 

4 The Algorithm 

4.1 The Main Idea 

We discover       using backward elimination. First, consider measuring the conditional 

dependence of   and   given   , where     . Clearly, the conditional dependence measure is 

zero, since   cannot explain    given itself. Next, consider removing a variable from the 

conditioning set   . Since a target is completely shielded from the other variables given its 

      by the definition of a Markov blanket, eliminating a variable in       from    will 
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Algorithm 2: Forward Selection 

1. Input: Target feature 𝑌, non-target features 𝑿 

2. Output: Non-target features in descending order 𝑿† 

3. 𝑿𝑺    𝑿 

4. 𝑿†    ∅ 

5. repeat 

6.      𝑥  min𝑋 𝑿𝑺𝑀
∗ 𝑌 {𝑿† ∪ 𝑋} 𝜎  𝜎  𝛯 

7.     𝑿𝑺    𝑿𝑺   𝑋 

8.     𝑿†    𝑿† ∪ 𝑋  

9. until 𝑿𝑺  ∅ 

 

cause the K-CDM to return a larger value (assuming enough sample size), since now   can better 

explain   when    is missing a variable in      . In contrast, removing a variable not in 

      will make no difference, since the conditional dependence measure is still zero if 

   contains      . This process of successively testing the removal of a variable in the 

conditioning set    and then permanently removing the variable that minimizes K-CDM is 

repeated until    is empty. 

4.2 Implementation 

The proposed method is a feature ranking algorithm that performs backward elimination using a 

K-CDM. The pseudo-code for the method is shown in Algorithm 1, such that K-CDM is written 

as:  

 ∗          

which denotes    or    evaluated with  ,   , and   such that   is the set of kernel 

hyperparameters (if any).  

The algorithm works as follows. It first computes K-CDM for every variable eliminated from the 

conditioning set     using appropriate kernel hyperparameters   (if any) chosen with a user 

defined method  . For example, the Gaussian sigma hyperparameter can be defined as the 

median distance between data points. The identified variable   which minimizes K-CDM when 

removed is then permanently removed from     and placed into  †. The above procedure is 

repeated until     is empty. The underlying principle behind the algorithm is thus to find the 

variable combination that can best explain the dependence between   and   by iteratively 

eliminating those variables that can least explain the dependence. 

Note that the above procedure has some advantages over previous methods from the nature of 

directly performing backward elimination rather than first performing a forward selection step. 

First, the method considers all possible multivariate relationships in      , since all variables in 

      are eliminated from    after the other variables assuming sufficient sample size to detect 

the relationships. Second, the proposed algorithm outputs a ranking of variables defined by the 

relative amounts of conditional dependence across the entire dataset. As a result, the ranking 

represents the relative importance of each of the variables in      . 

Algorithm 1: Backward Elimination 

1. Input: Target feature 𝑌, non-target features 𝑿 

2. Output: Non-target features in ascending order 𝑿ϯ 

3. 𝑿𝑺    𝑿 

4. 𝑿†  ∅ 

5. repeat 

6.      𝑥  min𝑋 𝑿𝑺𝑀
∗ 𝑌 {𝑿𝑺   𝑋} 𝜎  𝜎  𝛯 

7.      𝑿𝑺    𝑿𝑺   𝑋 

8.      𝑿†    𝑿† ∪ 𝑋 

9. until 𝑿𝑺  ∅ 
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The forward selection procedure (Algorithm 2) is faster and can be implemented by including 

variables in  †  in line 6 rather than removing variables from   . However, this method 

underperforms backward elimination in practice and is not guaranteed to return       in the 

infinite sample limit, since conditional dependence is not assessed within the context of the other 

variables in  . Also note that the output is in descending order in  † instead of in ascending 

order. 

4.3 Proof of Correctness 

Theorem. The final variables in  † from Algorithm 1 will include       under the assumptions 

that (1) K-CDM is defined by Equation 3 or 4, and (2) the dataset { ∪  } has an infinite sample 

size and is drawn i.i.d. from a joint probability distribution faithful to a DAG. 

Proof. First, a lower value returned from Equation 3 or 4 denotes a higher degree of conditional 

independence between   and   given    than a higher value by design. Second,   is 

conditionally independent of   given       by the definition of a Markov blanket. As a result, 

K-CDM is guaranteed to return a higher value every time a variable in       is tested for 

removal in line 6 compared to a variable not in       assuming an infinite sample size, where 

the data points are drawn i.i.d. from a probability distribution faithful to a DAG. Then, if    

contains variables in and not in      , a variable not in       will be eliminated earlier from 

   in line 7. The variable eliminated from    will then be placed into  † in line 8. As a result, 

the final variables in  † will include      .□ 

4.4 Time Complexity 

We assume that we remove     of    at every iteration. Then, the i
th
 iteration of Algorithm 1 

takes            where   represents the total number of variables and    represents the 

inversion of the kernel when calculating K-CDM. Similarly, the i
th
 iteration in Algorithm 2 has 

the same computational complexity if we iterate over every variable, but we can also stop the 

algorithm after obtaining   variables. In this case, the total number of iterations   is   

 [        ] which will require ∑          [        ]  ⁄    ⁄
   
    operations. 

Algorithm 2 thus takes       ⁄   time to discover   variables 

5 Experiments 

5.1 Evaluation 

We included two K-CDMs in Algorithm 1 by using Equation 3 or 4, which we will now denote as 

Proposed-F and Proposed-Z respectively. We compared Proposed-F and Proposed-Z with four 

feature ranking methods including BAHSIC, Relief-F and SVM-RFE. Rankings were normalized 

to compare variables with different sized Markov blankets as follows. If a continuous set of 

correct       variables were identified, then those variables were given the same rank. 

However, a break in the correct identification led to a higher rank. For example, if variables 2, 3 

and 4 are in       while 1, 5, and 6 are not, then an output of 6,3,5,4,2,1 in ascending order 

would be converted to the ranking 5,4,3,2,2,1. The algorithm which provides a lower mean rank 

of       was then judged to perform better. In the example, the mean rank is 2.666, since the 

ranks of       are 4,2,2. 

Next, we compared Algorithm 1 with three conditional dependence-based feature subset selection 

methods including IAMB, HITON-MB and MMMB by using the following accuracy measure: 

 (  
†      )   

|  
†       |

|  
† ∪      |

∗      

 

 

(5) 
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where   
†
 is the subset output from the conditional dependence algorithms or, for Proposed-F and 

Z,   
†
 is  † clipped to the size of      . For example, if variables 2, 3 and 4 are in       

while 1, 5, and 6 are not, then an output of 6,3,5,4,2,1 from Algorithm 1 would be converted 

4,2,1. Also, |  
       | is the cardinality of the intersection of the subset   

†
 and the known 

      and |  
 ∪     | is the cardinality of the union. Note that score   is equal to 100 when 

the algorithm outputs the exact      . On the other hand, decreasing the cardinality of   
†
 by 

failing to identify parts of the       or increasing the cardinality of   
†
 by random guessing 

both decrease  .  

5.2 Synthetic Datasets 

Due to the debate presented by Lou and Obradovic (2010), we first evaluated the reliability of the 

dependence and conditional dependence measures in correctly identifying       under multiple 

conditions by comparing BAHSIC to Proposed-F and Proposed-Z (Figure 1). We compared these 

two algorithms because BAHSIC, Proposed-F and Proposed-Z have similar algorithmic structures 

but the former uses HSIC to measure dependence while the latter two use a K-CDM. We 

constructed synthetic Markov blankets containing 6 continuous variables (2 parents, 2 children, 2 

spouses) by (1) generating the data points of 2 parents and 2 spouses by drawing from a Gaussian 

distribution with a standard deviation of 1, (2) summing the 2 parents and adding Gaussian noise 

with a standard deviation of 1 to create the data points of  , (3) similarly summing the spouses 

and   and adding noise to create the data points of the 2 children. Thus, variables in       were 

connected by linear weights of 1. We then equipped BAHSIC, Proposed-F and Proposed-Z with 

linear kernels. In Figure 1, the solid lines represent the average ranking of       with the 

corresponding 95% confidence intervals shown as two dashed lines of the same color. For the 

first experiment, we introduced 10 extraneous variables drawn from a Gaussian distribution with 

a standard deviation of 1 to the original 7 variables (target plus 6       variables) and varied 

 
 

Figure 1: Results from synthetic datasets assessing the accuracy of dependency and conditional 

dependency-based methods in detecting MB(Y) by comparing Proposed-F and Proposed-Z to 

BAHSIC. Solid lines represent the average rank of the Markov blanket and dotted lines 

represent the 95% confidence interval. Proposed-F and Proposed-Z outperform BAHSIC 

except in low sample size and high noise conditions as indicated by the arrows. Moreover, 

BAHSIC consistently fails to identify the spouses by saturating at a rank of 3, whereas the 

proposed algorithm does not. 
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the number of data points from 1 to 500. We found that BAHSIC performed better in the small 

sample size range (<75) but was then overtaken by Proposed-F and Proposed-Z. In order to 

understand this phenomenon, recall that the parents and children display an association to the 

target in this case whereas the spouses do not. As a result, BAHSIC cannot detect the 2 spouses 

and saturates at an average rank of 3, whereas Proposed-F and Proposed-Z continue to improve. 

For the second experiment, we raised the noise level throughout the entire dataset from 0 to 5 

standard deviations while keeping the sample size constant at 70 corresponding to 10 data points 

for the target and each of the 6 variables in      . Proposed-F and Proposed-Z performed better 

up to about a noise standard deviation of 1, suggesting that it may be more reliable to search for 

      using dependence measures instead of conditional dependence measures in high noise 

situations. This is expected, since the spouses need a common child to be predictive (Guyon et al., 

2007), and thus their signal may be easily erased with noise. Next, we re-connected the 17 

variables with 1 to 100 edges, again with a sample size of 70. We also varied the number of 

extraneous variables from 1 to 128 with the same sample size. Finally, we changed the value of 

the linear weights from 0.1 to 2. Proposed-F and Proposed-Z outperformed BAHSIC in these last 

three experimental conditions across all values. Moreover, Proposed-F and Proposed-Z gave 

identical to near identical results in all of the 5 experiments; the difference was greatest in the 

extraneous variables experiment, but it was only by 2-3 ranks with 64 and 128 extraneous 

variables. These results suggest that both K-CDMs can perform better than dependence based 

methods in correctly identifying       when the noise level is low enough and the sample size 

is large enough.  

We compared Proposed-F and Proposed-Z to IAMB with Fisher’s Z-test for the second set of 

synthetic experiments (Figure 2). We wanted to compare the accuracy of directly performing 

backward elimination on the dataset using a K-CDM instead of first performing statistical testing 

with a forward selection step. The HITON-MB and MMMB algorithms were not included, since 

they are data efficient modifications of IAMB which do not help in better assessing the impact of 

the forward selection step; however, these two algorithms are included in the next subsection. We 

found that Proposed-F and Proposed-Z outperformed IAMB across all 5 experiments, since the 

 
 

Figure 2: Results from synthetic datasets assessing the impact of a forward selection step by comparing 

Proposed-F and Proposed-Z to IAMB. Solid lines and dotted lines represent the average value 

of the accuracy measure in Equation 5 and 95% confidence intervals, respectively. Proposed-

F and Proposed-Z outperform IAMB in all tested conditions. Notice that IAMB performs 

poorly in the edges experiment as indicated by the arrow, since statistical testing becomes 

unreliable with a growing MB(Y) size but fixed sample size.  
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forward selection step may prevent IAMB from considering all multivariate combinations when 

discovering      . Note that IAMB performs particularly poorly in the edges experiment as the 

Markov blanket size grows because statistical testing becomes unreliable with a fixed sample 

size. On the other hand, Proposed-F and Proposed-Z overcome this problem by not relying on 

statistical testing. 

5.3 Expert-Designed Models and Real-World Datasets 

We used three publicly available expert-designed Bayesian network models including Alarm (36 

variables), Child (20), and Insurance (27) as well as two real-world datasets including CYTO (11; 

Sachs et al., 2005) and the U.S. Linked Infant Birth and Death Dataset from 1991 (87; Mani & 

Cooper, 1999). CYTO is a dataset of T-lymphocyte protein-protein interactions, and Infant is a 

dataset of clinical outcomes and decisions regarding infant births; in both of these, portions of 

      have been experimentally verified and confirmed by experts. We appropriately 

incorporated RBF kernels with sigma set to the median distance between data points in all kernel 

methods to detect discrete non-linear patterns. The IAMB, HITON-MB, and MMMB algorithms 

were implemented with the G
2
 test for discrete data. We iterated over all variables to obtain the 

mean rank and accuracy scores over different sample sizes. Results are shown in Figures 3 and 4 

for the expert-designed models and real-world datasets, respectively.  

The results show that both Proposed-F and Proposed-Z outperform other feature ranking and 

subset selection methods in correctly identifying       with larger sample sizes in the datasets 

of expert-designed models. Notice that the dependency based method BAHSIC plateaus at a 

relatively small sample size, but the proposed algorithm’s performance continues to improve with 

larger sample sizes. These results held when using either the method from Fukumizu et al. (2009) 

or Zhang et al. (2011) as the K-CDM. For the real-world datasets, Proposed-F and Proposed-Z 

outperformed all other conditional dependence-based algorithms. The results are less clear when 

comparing against the ranking algorithms in CYTO, since no algorithm consistently 

outperformed the others, but we observed that the proposed algorithm significantly outperformed 

 
 

Figure 3: Results from datasets created from expert-designed models. Solid lines and dotted lines again 

represent the average ranks of the Markov blanket or the average value of the accuracy measure in 

Equation 5 and 95% confidence intervals, respectively. Proposed-F and Proposed-Z outperform all 

ranking methods across the larger sample sizes and subset selection methods across all of the 

sample sizes.  

 



MARKOV BLANKET RANKING USING KERNEL-BASED CONDITIONAL DEPENDENCE MEASURES 

 9 

Relief-F on occasion. For Infant, the proposed algorithm was outperformed by BAHSIC, since 

the Markov blankets in this dataset only contain parents and children; in this situation, kernel-

based dependency methods may perform better, as we observed in the synthetic experiments. 

  

6 Conclusion 

We introduced a feature ranking algorithm that is useful for discovering      . The algorithm 

uses a K-CDM to eliminate variables using backward elimination. Overall, the method exhibits 

superior performance in synthetic data and in real datasets on average when compared to several 

feature ranking and subset selection methods. 
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