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Carter et al. (1) report that exposure to static magnetic and
electric fields (sBE), for as little as 3days, reverses glucose
intolerance and insulin resistance in diet-induced and genetic
mouse models of type 2 diabetes. They hypothesize that sBE
triggers a systemic redox response to modulate insulin sensi-
tivity and that sBE could therefore be used as a noninvasive
treatment for type 2 diabetes. However, these authors were
unable to define a mechanism to explain how sBEmight alter
reactive oxygen species (ROS) or to identify the specific pro-
teins thatmediate this effect. Given these limitations, we wish
to propose an alternative hypothesis to explain their findings.

It is well established that the vestibular system in species
ranging from humans to mice to zebrafish is impacted by
static magnetic fields (2–4). This phenomenon is dependent
on the magnetic field strength and is often manifested in
humans as nystagmus (5). The static magnetic field used by
Carter et al. (1) was �100 times higher than the Earth’s mag-
netic field, which is sufficient to induce these effects. The
proposed mechanism for this effect on the vestibular system
is thought to involve a Lorentz force resulting from the inter-
action of a strong static magnetic field with naturally occur-
ring ionic currents flowing through the inner ear endolymph
into vestibular hair cells (3). The resulting force within the
endolymph is strong enough to displace the lateral semicir-
cular canal cupula, inducing vertigo and horizontal nystag-
mus. Headmotion in themagnetic field amplifies this effect.

Whenmice are exposed to sBE, movement in this magnetic
field might cause disorientation and vertigo (3), whereas
movement in the electrostatic field would be expected to put
tension onmouse facial whiskers, which are exquisitely sensi-
tive to motion. Therefore, sBE exposure would be expected to
cause a temporary stress response leading to increased
plasma catecholamine concentrations (6, 7). Although sBE-
induced increases in circulating catecholamines would be
expected to acutely promote glucose intolerance and insulin
resistance due to increased white adipose tissue (WAT) lipoly-
sis, increased hepatic glycogenolysis and gluconeogenesis,
intermittent increases in plasma catecholamines would be
expected to increase energy expenditure and promote AMP-
activated protein kinase (AMPK) activation, which are both
well established to reverse insulin resistance and hyperglyce-
mia in high fat-fed mice and db/db mice. These effects would

lead, in turn, to reductions in ectopic lipid content and more
importantly reductions in plasma membrane associated sn-
1,2-diacylglycerol content-nPKC activation in liver and
muscle, reductions in liver glycogen content, increased
glucose transport into muscle, increased liver and muscle
fat oxidation, reduced hepatic de novo lipogenesis, and
other related effects (7–10). In this regard, all insulin sensi-
tivity measurements were performed when the mice were
outside the sBE during which time they would have had
time to acclimate to the absence of this sBE-induced stress
response.

Consistent with this alternative hypothesis the authors
report increased energy expenditure in their high fat diet
(HFD)-fed mice exposed to sBE along with decreased body
weight (Fig. S3D) and borderline statistically significant (P =
0.08) increases in heart rate (Table S1). Although they do not
report the effect of sBE exposure on liver triglyceride content
in their study, they do show histological changes (reduced
vacuolization) in liver of sBE-exposed HFD-mice compared
with the control HFD-mice (Fig. S3A), which would be con-
sistent with sBE-induced reductions in hepatic triglyceride
content in the HFD-fed mice. Moreover, sBE-exposed HFD-
fed mice also displayed reduced RQ during the dark cycle,
indicative of increased fat oxidation and consistent with
increased AMPK activity (Fig. S3D).

This alternative intermittent stress hypothesis is readily
testable by measuring plasma catecholamine concentra-
tions with indwelling catheters, as well as urinary cate-
cholamines, and additional measurements of heart rate,
whereas mice are exposed to the sBE. In addition, liver
and muscle triglyceride and glycogen content as well as
AMPK activity in liver and skeletal muscle should be meas-
ured in all of their diet-induced and genetic mouse models
of type 2 diabetes as well as uncoupling protein-1 (UCP-1)
protein expression in brown adipose tissue, which would
be predicted to be upregulated by intermittent increases
in plasma catecholamines when the mice are put through
the combined sBE exposure protocol (11).

Although the findings of Carter et al. (1) are intriguing, we
believe it would be important to do these additional studies in
rodents before performing similar studies in humans since if
this alternative intermittent stress hypothesis is correct it will
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demonstrate why sBE treatment would not translate as an
effective therapy for type 2 diabetes in humans.
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